深入解析create-t3-app中的RSC缓存问题与解决方案
2025-05-06 20:23:06作者:冯爽妲Honey
背景介绍
在Next.js应用开发中,create-t3-app作为一个流行的全栈框架,集成了TRPC和React Server Components(RSC)等现代技术栈。然而,在使用过程中,开发者发现了一个关键的性能问题:在多个RSC组件中调用相同的TRPC查询时,会导致重复请求,而不是像Next.js原生fetch那样自动缓存。
问题本质
Next.js的App Router模式中,原生fetch请求会自动进行"per-request"级别的缓存,即在同一次渲染过程中,相同的fetch请求只会执行一次。然而,TRPC的RSC调用目前没有实现这一机制,导致:
- 多个组件调用相同TRPC查询时会产生重复请求
- 增加了不必要的后端负载
- 可能导致数据不一致问题
现有解决方案分析
目前社区提出了几种临时解决方案:
1. 手动React Cache包装
api.post.hello = cache(() => api.post.hello())
这种方法简单直接,但需要为每个TRPC过程手动添加缓存包装,维护成本高。
2. 递归映射TRPC路由
export const trpc = mapLeaves(router, cache);
通过工具函数自动为所有TRPC过程添加缓存包装,比手动方式更优雅,但仍属于应用层解决方案。
3. Node缓存方案
const cache = new NodeCache({ stdTTL: 300, checkperiod: 320 });
使用Node级别的缓存,但需要注意缓存失效和权限问题,可能不适合所有场景。
技术深度分析
RSC缓存机制
React Server Components的缓存是基于React的cache()函数实现的,它能够:
- 在同一次渲染过程中缓存函数调用
- 自动处理Promise结果
- 与React的渲染流程深度集成
TRPC集成挑战
TRPC作为一个独立于React的RPC框架,其设计初衷是通用的,不特定于任何前端框架。因此:
- 缓存逻辑不应该侵入TRPC核心
- 需要在TRPC-React集成层实现缓存
- 需要考虑不同渲染环境(SSR/CSR)的差异
最佳实践建议
基于当前技术状态,建议开发者:
- 对于简单应用,可以采用手动缓存包装
- 中等规模项目,考虑实现自动化的过程缓存映射
- 关注TRPC官方对RSC支持的进展
未来展望
从技术演进角度看,这个问题的最佳解决方案应该是:
- 在
@trpc/react-query/rsc中内置缓存支持 - 提供细粒度的缓存控制选项
- 保持与Next.js原生fetch缓存行为的一致性
总结
create-t3-app框架中TRPC与RSC的缓存问题反映了现代全栈开发中的集成挑战。虽然目前有各种临时解决方案,但长期来看需要框架层面的支持。开发者应当根据项目需求选择合适的缓存策略,同时关注TRPC官方对RSC支持的改进。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C036
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
428
3.29 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
345
Ascend Extension for PyTorch
Python
236
270
暂无简介
Dart
686
161
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
327
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
71
36
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
669