Apache Ignite 查询优化器中的 UNION_MERGE 规则内存问题分析
在分布式数据库系统 Apache Ignite 的查询优化过程中,我们发现了一个值得深入探讨的性能问题。这个问题涉及到查询计划生成时的内存消耗激增现象,特别出现在包含大量 UNION ALL 操作和子查询的复杂 SQL 语句场景中。
问题背景
Ignite 的查询优化器基于 Apache Calcite 框架实现,采用基于成本的优化(CBO)策略。在优化阶段,系统会应用一系列规则来转换查询计划,其中包括 UNION_MERGE 规则。这条规则的设计初衷是将多个相邻的 UNION ALL 操作合并为一个,理论上可以减少查询执行时的中间结果处理开销。
然而,在实际应用中,当遇到包含大量 UNION ALL 和复杂子查询的 SQL 语句时,这条优化规则反而会导致严重的性能问题。具体表现为查询优化阶段的内存消耗呈指数级增长,最终可能引发 Java 垃圾收集器(GC)的频繁工作甚至系统卡顿。
问题机理分析
问题的核心在于查询计划空间的爆炸式增长。以一个实际案例为例,当 SQL 查询包含 9 个 UNION ALL 操作,且每个子查询有 7 种可能的执行计划时,理论上会产生 7^9 (约 4000 万)种可能的组合。这种组合爆炸现象直接导致了两个严重后果:
-
内存消耗剧增:在 TraitUtils#fillRecursive 方法中,用于存储中间结果的 HashSet 会占用大量内存空间。每个可能的执行计划都需要被存储和评估,导致内存需求呈指数级增长。
-
优化时间延长:查询优化器需要评估所有可能的执行计划组合,计算成本的时间复杂度也随之呈指数增长。
技术细节
在 Ignite 的实现中,UNION_MERGE 规则属于 CoreRules 的一部分,在 PlannerPhase#OPTIMIZATION 阶段被应用。该规则会将多个 IgniteUnionAll 操作符合并为一个具有多个子节点的操作符。虽然这种合并能够减少执行时的操作层级,但在复杂查询场景下,它带来的代价远大于收益。
类似的问题也存在于其他集合操作规则中,包括:
- MINUS_MERGE(差集合并规则)
- INTERSECT_MERGE(交集合并规则)
这些规则都面临着相同的组合爆炸风险,特别是在处理包含大量子查询的复杂语句时。
解决方案与建议
针对这一问题,我们建议采取以下措施:
-
规则禁用:在查询优化阶段完全禁用 UNION_MERGE、MINUS_MERGE 和 INTERSECT_MERGE 规则,避免计划空间的爆炸式增长。
-
启发式限制:如果必须保留这些优化规则,可以引入启发式限制条件,例如:
- 当 UNION ALL 操作数量超过阈值时跳过合并
- 当子查询复杂度超过特定指标时禁用规则
- 基于统计信息预测计划空间大小,动态决定是否应用规则
-
内存保护机制:在优化器实现中加入内存使用监控,当检测到内存消耗接近危险阈值时,自动回退到更保守的优化策略。
-
替代优化策略:考虑实现基于规则的优化(RBO)与基于成本的优化(CBO)的混合策略,对已知会导致问题的查询模式采用更确定的优化路径。
系统设计思考
这一问题的出现引发了我们对分布式数据库查询优化器设计的深入思考:
-
优化规则的适用性:并非所有优化规则在所有场景下都适用,需要根据查询特征动态调整优化策略。
-
资源消耗与收益平衡:查询优化本身也是需要消耗资源的操作,需要在优化深度和执行效率之间找到平衡点。
-
防御性编程:对于可能引发资源问题的操作,应该预先设置保护机制,防止单个查询耗尽系统资源。
-
复杂度管理:在处理复杂查询时,可能需要采用分阶段优化策略,先进行粗粒度优化,再进行局部精细优化。
结论
Apache Ignite 查询优化器中的 UNION_MERGE 及相关规则在特定场景下会导致严重的性能问题。通过深入分析问题机理,我们认识到在分布式数据库系统的查询优化过程中,必须谨慎处理可能引发组合爆炸的优化规则。理想的解决方案应当结合规则禁用、启发式限制和资源保护机制,在保证查询性能的同时避免系统资源被过度消耗。这一案例也为分布式数据库查询优化器的设计提供了有价值的实践经验。
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++095AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选









