AWS SDK for Java V2 中 BedrockRuntime ConverseRequest 工具使用详解
2025-07-02 12:21:35作者:柏廷章Berta
概述
Amazon Bedrock 作为 AWS 提供的托管式生成式 AI 服务,其 Java SDK 中的 ConverseRequest 功能允许开发者实现模型与自定义工具的无缝交互。本文将深入探讨如何正确配置和使用这一功能,解决开发过程中常见的 400 Bad Request 错误问题。
核心问题分析
在实现 BedrockRuntime 的 ConverseRequest 工具功能时,开发者常遇到两个主要挑战:
- 文档不足:官方文档对工具配置的具体实现细节描述不够详尽
- 请求格式错误:由于对工具输入模式理解不准确,导致 400 错误
正确实现方案
1. 工具配置规范
工具配置的核心在于正确构建 ToolConfiguration 对象,特别是输入模式的 JSON Schema 定义:
private static ToolConfiguration createToolConfig() {
return ToolConfiguration.builder()
.tools(Tool.builder()
.toolSpec(ToolSpecification.builder()
.name("currentTemperature")
.description("返回城市的当前温度")
.inputSchema(ToolInputSchema.builder()
.json(createToolSpecDocument())
.build())
.build())
.build())
.build();
}
2. 输入模式定义
输入模式必须遵循 JSON Schema 规范,包含类型定义、属性描述和必填字段:
private static Document createToolSpecDocument() {
// 定义城市参数
var cityParameter = Document.mapBuilder()
.putString("type", "string")
.putString("description", "城市名称")
.build();
// 组装属性
var properties = Document.mapBuilder()
.putDocument("city", cityParameter)
.build();
// 指定必填字段
var required = Document.listBuilder()
.addString("city")
.build();
return Document.mapBuilder()
.putString("type", "object")
.putDocument("properties", properties)
.putDocument("required", required)
.build();
}
3. 完整交互流程
实现工具调用的完整流程包括:
- 发送初始请求
- 处理工具调用响应
- 执行工具逻辑
- 返回工具结果
- 获取最终响应
public static String converse() {
var client = createClient();
var modelId = "anthropic.claude-3-5-sonnet-20240620-v1:0";
var toolConfig = createToolConfig();
var messages = new ArrayList<>(List.of(createUserMessage("巴黎现在的温度是多少?")));
try {
var response = sendConverse(client, modelId, toolConfig, messages);
messages.add(response.output().message());
while (StopReason.TOOL_USE.equals(response.stopReason())) {
handleToolUse(response, messages);
response = sendConverse(client, modelId, toolConfig, messages);
}
return response.output().message().content().get(0).text();
} catch (SdkClientException e) {
throw new RuntimeException("调用模型失败: " + e.getMessage(), e);
}
}
工具处理实现
当模型返回工具调用请求时,需要正确处理并返回结果:
private static void handleToolUse(ConverseResponse response, List<Message> messages) {
var toolRequests = response.output()
.message()
.content()
.stream()
.filter(contentBlock -> Objects.nonNull(contentBlock.toolUse()))
.toList();
for (var toolRequest : toolRequests) {
var tool = toolRequest.toolUse();
ToolResultBlock toolResult = processToolRequest(tool);
messages.add(Message.builder()
.role(ConversationRole.USER)
.content(ContentBlock.builder().toolResult(toolResult).build())
.build());
}
}
结果格式规范
工具返回结果需要遵循特定格式,包含状态和结构化数据:
private static ToolResultBlock processToolRequest(ToolUseBlock tool) {
if ("currentTemperature".equals(tool.name())) {
try {
var input = tool.input();
var inputMap = input.asMap();
var cityName = Optional.ofNullable(inputMap.get("city"))
.map(Document::asString)
.orElse("");
double result = getTemperatureFromAPI(cityName);
return ToolResultBlock.builder()
.toolUseId(tool.toolUseId())
.content(ToolResultContentBlock.builder()
.json(createToolResultDocument(result))
.build())
.status(ToolResultStatus.SUCCESS)
.build();
} catch (Exception ex) {
return ToolResultBlock.builder()
.toolUseId(tool.toolUseId())
.content(ToolResultContentBlock.builder()
.text(ex.getMessage()))
.build())
.status(ToolResultStatus.ERROR)
.build();
}
}
return null;
}
最佳实践建议
- 输入验证:在处理工具输入时,务必进行严格的参数验证
- 错误处理:为工具实现提供完善的错误处理机制
- 日志记录:记录完整的交互流程,便于调试
- 性能监控:跟踪工具调用的延迟和资源消耗
- 结果缓存:对耗时工具考虑实现结果缓存机制
总结
通过本文介绍的正确实现方式,开发者可以充分利用 BedrockRuntime 的工具调用功能,构建强大的生成式 AI 应用。关键在于正确配置工具规范、遵循输入输出模式约定,以及实现完整的交互流程。随着 AWS 不断完善相关文档,这一功能的易用性将会进一步提高。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C086
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python057
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0137
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
OpenSSL 3.3.0资源下载指南:新一代加密库的全面解析与部署教程 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 STM32到GD32项目移植完全指南:从兼容性到实战技巧 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
472
3.49 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
213
86
暂无简介
Dart
719
173
Ascend Extension for PyTorch
Python
278
314
React Native鸿蒙化仓库
JavaScript
286
333
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
848
432
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
696
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19