AWS SDK for Java V2 中 BedrockRuntime ConverseRequest 工具使用详解
2025-07-02 09:54:40作者:柏廷章Berta
概述
Amazon Bedrock 作为 AWS 提供的托管式生成式 AI 服务,其 Java SDK 中的 ConverseRequest 功能允许开发者实现模型与自定义工具的无缝交互。本文将深入探讨如何正确配置和使用这一功能,解决开发过程中常见的 400 Bad Request 错误问题。
核心问题分析
在实现 BedrockRuntime 的 ConverseRequest 工具功能时,开发者常遇到两个主要挑战:
- 文档不足:官方文档对工具配置的具体实现细节描述不够详尽
- 请求格式错误:由于对工具输入模式理解不准确,导致 400 错误
正确实现方案
1. 工具配置规范
工具配置的核心在于正确构建 ToolConfiguration 对象,特别是输入模式的 JSON Schema 定义:
private static ToolConfiguration createToolConfig() {
return ToolConfiguration.builder()
.tools(Tool.builder()
.toolSpec(ToolSpecification.builder()
.name("currentTemperature")
.description("返回城市的当前温度")
.inputSchema(ToolInputSchema.builder()
.json(createToolSpecDocument())
.build())
.build())
.build())
.build();
}
2. 输入模式定义
输入模式必须遵循 JSON Schema 规范,包含类型定义、属性描述和必填字段:
private static Document createToolSpecDocument() {
// 定义城市参数
var cityParameter = Document.mapBuilder()
.putString("type", "string")
.putString("description", "城市名称")
.build();
// 组装属性
var properties = Document.mapBuilder()
.putDocument("city", cityParameter)
.build();
// 指定必填字段
var required = Document.listBuilder()
.addString("city")
.build();
return Document.mapBuilder()
.putString("type", "object")
.putDocument("properties", properties)
.putDocument("required", required)
.build();
}
3. 完整交互流程
实现工具调用的完整流程包括:
- 发送初始请求
- 处理工具调用响应
- 执行工具逻辑
- 返回工具结果
- 获取最终响应
public static String converse() {
var client = createClient();
var modelId = "anthropic.claude-3-5-sonnet-20240620-v1:0";
var toolConfig = createToolConfig();
var messages = new ArrayList<>(List.of(createUserMessage("巴黎现在的温度是多少?")));
try {
var response = sendConverse(client, modelId, toolConfig, messages);
messages.add(response.output().message());
while (StopReason.TOOL_USE.equals(response.stopReason())) {
handleToolUse(response, messages);
response = sendConverse(client, modelId, toolConfig, messages);
}
return response.output().message().content().get(0).text();
} catch (SdkClientException e) {
throw new RuntimeException("调用模型失败: " + e.getMessage(), e);
}
}
工具处理实现
当模型返回工具调用请求时,需要正确处理并返回结果:
private static void handleToolUse(ConverseResponse response, List<Message> messages) {
var toolRequests = response.output()
.message()
.content()
.stream()
.filter(contentBlock -> Objects.nonNull(contentBlock.toolUse()))
.toList();
for (var toolRequest : toolRequests) {
var tool = toolRequest.toolUse();
ToolResultBlock toolResult = processToolRequest(tool);
messages.add(Message.builder()
.role(ConversationRole.USER)
.content(ContentBlock.builder().toolResult(toolResult).build())
.build());
}
}
结果格式规范
工具返回结果需要遵循特定格式,包含状态和结构化数据:
private static ToolResultBlock processToolRequest(ToolUseBlock tool) {
if ("currentTemperature".equals(tool.name())) {
try {
var input = tool.input();
var inputMap = input.asMap();
var cityName = Optional.ofNullable(inputMap.get("city"))
.map(Document::asString)
.orElse("");
double result = getTemperatureFromAPI(cityName);
return ToolResultBlock.builder()
.toolUseId(tool.toolUseId())
.content(ToolResultContentBlock.builder()
.json(createToolResultDocument(result))
.build())
.status(ToolResultStatus.SUCCESS)
.build();
} catch (Exception ex) {
return ToolResultBlock.builder()
.toolUseId(tool.toolUseId())
.content(ToolResultContentBlock.builder()
.text(ex.getMessage()))
.build())
.status(ToolResultStatus.ERROR)
.build();
}
}
return null;
}
最佳实践建议
- 输入验证:在处理工具输入时,务必进行严格的参数验证
- 错误处理:为工具实现提供完善的错误处理机制
- 日志记录:记录完整的交互流程,便于调试
- 性能监控:跟踪工具调用的延迟和资源消耗
- 结果缓存:对耗时工具考虑实现结果缓存机制
总结
通过本文介绍的正确实现方式,开发者可以充分利用 BedrockRuntime 的工具调用功能,构建强大的生成式 AI 应用。关键在于正确配置工具规范、遵循输入输出模式约定,以及实现完整的交互流程。随着 AWS 不断完善相关文档,这一功能的易用性将会进一步提高。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
192
212
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
650
270
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
296
111
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
384
3.7 K
仓颉编译器源码及 cjdb 调试工具。
C++
128
857
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
243
316
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
66
96
暂无简介
Dart
633
143