AWS SDK for Java V2 中 BedrockRuntime ConverseRequest 工具使用详解
2025-07-02 08:54:33作者:柏廷章Berta
概述
Amazon Bedrock 作为 AWS 提供的托管式生成式 AI 服务,其 Java SDK 中的 ConverseRequest 功能允许开发者实现模型与自定义工具的无缝交互。本文将深入探讨如何正确配置和使用这一功能,解决开发过程中常见的 400 Bad Request 错误问题。
核心问题分析
在实现 BedrockRuntime 的 ConverseRequest 工具功能时,开发者常遇到两个主要挑战:
- 文档不足:官方文档对工具配置的具体实现细节描述不够详尽
- 请求格式错误:由于对工具输入模式理解不准确,导致 400 错误
正确实现方案
1. 工具配置规范
工具配置的核心在于正确构建 ToolConfiguration 对象,特别是输入模式的 JSON Schema 定义:
private static ToolConfiguration createToolConfig() {
return ToolConfiguration.builder()
.tools(Tool.builder()
.toolSpec(ToolSpecification.builder()
.name("currentTemperature")
.description("返回城市的当前温度")
.inputSchema(ToolInputSchema.builder()
.json(createToolSpecDocument())
.build())
.build())
.build())
.build();
}
2. 输入模式定义
输入模式必须遵循 JSON Schema 规范,包含类型定义、属性描述和必填字段:
private static Document createToolSpecDocument() {
// 定义城市参数
var cityParameter = Document.mapBuilder()
.putString("type", "string")
.putString("description", "城市名称")
.build();
// 组装属性
var properties = Document.mapBuilder()
.putDocument("city", cityParameter)
.build();
// 指定必填字段
var required = Document.listBuilder()
.addString("city")
.build();
return Document.mapBuilder()
.putString("type", "object")
.putDocument("properties", properties)
.putDocument("required", required)
.build();
}
3. 完整交互流程
实现工具调用的完整流程包括:
- 发送初始请求
- 处理工具调用响应
- 执行工具逻辑
- 返回工具结果
- 获取最终响应
public static String converse() {
var client = createClient();
var modelId = "anthropic.claude-3-5-sonnet-20240620-v1:0";
var toolConfig = createToolConfig();
var messages = new ArrayList<>(List.of(createUserMessage("巴黎现在的温度是多少?")));
try {
var response = sendConverse(client, modelId, toolConfig, messages);
messages.add(response.output().message());
while (StopReason.TOOL_USE.equals(response.stopReason())) {
handleToolUse(response, messages);
response = sendConverse(client, modelId, toolConfig, messages);
}
return response.output().message().content().get(0).text();
} catch (SdkClientException e) {
throw new RuntimeException("调用模型失败: " + e.getMessage(), e);
}
}
工具处理实现
当模型返回工具调用请求时,需要正确处理并返回结果:
private static void handleToolUse(ConverseResponse response, List<Message> messages) {
var toolRequests = response.output()
.message()
.content()
.stream()
.filter(contentBlock -> Objects.nonNull(contentBlock.toolUse()))
.toList();
for (var toolRequest : toolRequests) {
var tool = toolRequest.toolUse();
ToolResultBlock toolResult = processToolRequest(tool);
messages.add(Message.builder()
.role(ConversationRole.USER)
.content(ContentBlock.builder().toolResult(toolResult).build())
.build());
}
}
结果格式规范
工具返回结果需要遵循特定格式,包含状态和结构化数据:
private static ToolResultBlock processToolRequest(ToolUseBlock tool) {
if ("currentTemperature".equals(tool.name())) {
try {
var input = tool.input();
var inputMap = input.asMap();
var cityName = Optional.ofNullable(inputMap.get("city"))
.map(Document::asString)
.orElse("");
double result = getTemperatureFromAPI(cityName);
return ToolResultBlock.builder()
.toolUseId(tool.toolUseId())
.content(ToolResultContentBlock.builder()
.json(createToolResultDocument(result))
.build())
.status(ToolResultStatus.SUCCESS)
.build();
} catch (Exception ex) {
return ToolResultBlock.builder()
.toolUseId(tool.toolUseId())
.content(ToolResultContentBlock.builder()
.text(ex.getMessage()))
.build())
.status(ToolResultStatus.ERROR)
.build();
}
}
return null;
}
最佳实践建议
- 输入验证:在处理工具输入时,务必进行严格的参数验证
- 错误处理:为工具实现提供完善的错误处理机制
- 日志记录:记录完整的交互流程,便于调试
- 性能监控:跟踪工具调用的延迟和资源消耗
- 结果缓存:对耗时工具考虑实现结果缓存机制
总结
通过本文介绍的正确实现方式,开发者可以充分利用 BedrockRuntime 的工具调用功能,构建强大的生成式 AI 应用。关键在于正确配置工具规范、遵循输入输出模式约定,以及实现完整的交互流程。随着 AWS 不断完善相关文档,这一功能的易用性将会进一步提高。
登录后查看全文
热门项目推荐
相关项目推荐
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0117AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析2 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析3 freeCodeCamp课程视频测验中的Tab键导航问题解析4 freeCodeCamp课程中屏幕放大器知识点优化分析5 freeCodeCamp英语课程填空题提示缺失问题分析6 freeCodeCamp课程页面空白问题的技术分析与解决方案7 freeCodeCamp Cafe Menu项目中link元素的void特性解析8 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 9 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析10 freeCodeCamp全栈开发课程中React实验项目的分类修正
最新内容推荐
Jetson TX2开发板官方资源完全指南:从入门到精通 WebVideoDownloader:高效网页视频抓取工具全面使用指南 PANTONE潘通AI色板库:设计师必备的色彩管理利器 ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
223
2.26 K

暂无简介
Dart
525
116

React Native鸿蒙化仓库
JavaScript
210
286

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

openvela 操作系统专为 AIoT 领域量身定制。服务框架:主要包含蓝牙、电话、图形、多媒体、应用框架、安全、系统服务框架。
CMake
795
12

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
984
581

Ascend Extension for PyTorch
Python
67
97

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
566
94

GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】
Jinja
44
0