DataFusion项目参数类型推断测试的优化实践
2025-05-31 20:41:06作者:申梦珏Efrain
在Apache DataFusion项目中,参数类型推断是一个重要功能,它允许SQL查询使用参数化查询(如$1、$2等占位符),并在执行前推断这些参数的类型。然而,当前的测试实现存在大量重复代码,使得测试维护和理解变得困难。
问题现状
当前测试代码中,每个参数类型推断测试都包含以下重复部分:
- 创建SQL查询字符串
- 生成逻辑计划
- 验证参数类型推断结果
- 替换参数值为实际值
- 验证最终逻辑计划
这种模式导致测试代码冗长且难以一目了然地看出测试覆盖了哪些场景。更重要的是,当需要修改测试逻辑时,需要在多个地方进行相同的更改,增加了维护成本。
解决方案设计
为了解决这个问题,我们可以引入一个专门的测试结构体ParameterTest,它将封装所有测试相关的信息:
struct ParameterTest {
sql: &'static str, // 测试SQL语句
expected_types: Vec<(&'static str, Option<DataType>)>, // 预期参数类型
param_values: Vec<ScalarValue>, // 参数值
}
这个结构体将提供一个run方法,该方法会:
- 根据SQL创建逻辑计划
- 验证参数类型推断结果是否符合预期
- 使用提供的参数值替换占位符
- 返回包含初始和最终逻辑计划的格式化字符串
优化后的测试示例
优化后的测试代码将更加简洁明了:
#[test]
fn test_infer_types_from_predicate() {
let test = ParameterTest {
sql: "SELECT id, age FROM person WHERE age = $1",
expected_types: vec![("$1", Some(DataType::Int32))],
param_values: vec![ScalarValue::Int32(Some(10))],
};
assert_snapshot!(test.run(), @r#"
** Initial Plan:
Projection: person.id, person.age
Filter: person.age = $1
TableScan: person
** Final Plan:
Projection: person.id, person.age
Filter: person.age = Int32(10)
TableScan: person
"#);
}
技术优势
- 代码复用:将公共测试逻辑封装在
ParameterTest中,避免重复 - 可读性提升:测试意图更加清晰,一眼就能看出测试场景
- 维护简化:修改测试逻辑只需在一个地方进行
- 覆盖可视化:更容易看出哪些场景已被覆盖,哪些尚未测试
- 快照测试:结合insta的快照测试功能,可以轻松验证逻辑计划的正确性
实现细节
在实际实现中,ParameterTest的run方法将执行以下步骤:
- 使用DataFusion的SQL解析器将SQL转换为逻辑计划
- 调用
get_parameter_types方法获取参数类型推断结果 - 验证推断结果与预期一致
- 使用
with_param_values方法替换参数占位符 - 格式化初始和最终逻辑计划为字符串
- 返回包含两个计划的可读性强的字符串
这种设计不仅适用于简单的参数推断测试,还可以轻松扩展到更复杂的场景,如多参数、嵌套查询、不同类型参数等测试用例。
总结
通过引入ParameterTest结构体,我们显著提升了DataFusion项目中参数类型推断测试的可维护性和可读性。这种模式不仅适用于当前场景,也可以作为其他类似测试的参考模板,体现了良好的测试代码设计原则。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
191
210
暂无简介
Dart
630
143
React Native鸿蒙化仓库
JavaScript
243
316
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
481
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
649
270
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
296
107
仓颉编译器源码及 cjdb 调试工具。
C++
128
858
openGauss kernel ~ openGauss is an open source relational database management system
C++
158
210