DataFusion项目参数类型推断测试的优化实践
2025-05-31 17:40:02作者:申梦珏Efrain
在Apache DataFusion项目中,参数类型推断是一个重要功能,它允许SQL查询使用参数化查询(如$1、$2等占位符),并在执行前推断这些参数的类型。然而,当前的测试实现存在大量重复代码,使得测试维护和理解变得困难。
问题现状
当前测试代码中,每个参数类型推断测试都包含以下重复部分:
- 创建SQL查询字符串
- 生成逻辑计划
- 验证参数类型推断结果
- 替换参数值为实际值
- 验证最终逻辑计划
这种模式导致测试代码冗长且难以一目了然地看出测试覆盖了哪些场景。更重要的是,当需要修改测试逻辑时,需要在多个地方进行相同的更改,增加了维护成本。
解决方案设计
为了解决这个问题,我们可以引入一个专门的测试结构体ParameterTest,它将封装所有测试相关的信息:
struct ParameterTest {
sql: &'static str, // 测试SQL语句
expected_types: Vec<(&'static str, Option<DataType>)>, // 预期参数类型
param_values: Vec<ScalarValue>, // 参数值
}
这个结构体将提供一个run方法,该方法会:
- 根据SQL创建逻辑计划
- 验证参数类型推断结果是否符合预期
- 使用提供的参数值替换占位符
- 返回包含初始和最终逻辑计划的格式化字符串
优化后的测试示例
优化后的测试代码将更加简洁明了:
#[test]
fn test_infer_types_from_predicate() {
let test = ParameterTest {
sql: "SELECT id, age FROM person WHERE age = $1",
expected_types: vec![("$1", Some(DataType::Int32))],
param_values: vec![ScalarValue::Int32(Some(10))],
};
assert_snapshot!(test.run(), @r#"
** Initial Plan:
Projection: person.id, person.age
Filter: person.age = $1
TableScan: person
** Final Plan:
Projection: person.id, person.age
Filter: person.age = Int32(10)
TableScan: person
"#);
}
技术优势
- 代码复用:将公共测试逻辑封装在
ParameterTest中,避免重复 - 可读性提升:测试意图更加清晰,一眼就能看出测试场景
- 维护简化:修改测试逻辑只需在一个地方进行
- 覆盖可视化:更容易看出哪些场景已被覆盖,哪些尚未测试
- 快照测试:结合insta的快照测试功能,可以轻松验证逻辑计划的正确性
实现细节
在实际实现中,ParameterTest的run方法将执行以下步骤:
- 使用DataFusion的SQL解析器将SQL转换为逻辑计划
- 调用
get_parameter_types方法获取参数类型推断结果 - 验证推断结果与预期一致
- 使用
with_param_values方法替换参数占位符 - 格式化初始和最终逻辑计划为字符串
- 返回包含两个计划的可读性强的字符串
这种设计不仅适用于简单的参数推断测试,还可以轻松扩展到更复杂的场景,如多参数、嵌套查询、不同类型参数等测试用例。
总结
通过引入ParameterTest结构体,我们显著提升了DataFusion项目中参数类型推断测试的可维护性和可读性。这种模式不仅适用于当前场景,也可以作为其他类似测试的参考模板,体现了良好的测试代码设计原则。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
STM32到GD32项目移植完全指南:从兼容性到实战技巧 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 开源电子设计自动化利器:KiCad EDA全方位使用指南 网页设计期末大作业资源包 - 一站式解决方案助力高效完成项目 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 ONVIF设备模拟器:开发测试必备的智能安防仿真工具
项目优选
收起
deepin linux kernel
C
24
9
暂无简介
Dart
669
155
Ascend Extension for PyTorch
Python
219
236
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
660
308
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.81 K
React Native鸿蒙化仓库
JavaScript
259
322
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.19 K
654
仓颉编程语言运行时与标准库。
Cangjie
141
878