开源项目 `pose-attention` 使用教程
2024-08-18 23:38:12作者:滑思眉Philip
1. 项目的目录结构及介绍
pose-attention/
├── data/
│ ├── __init__.py
│ ├── dataset.py
│ ├── transforms.py
├── models/
│ ├── __init__.py
│ ├── pose_attention.py
│ ├── utils.py
├── configs/
│ ├── config.yaml
├── scripts/
│ ├── train.py
│ ├── test.py
├── README.md
├── requirements.txt
目录结构介绍
data/
: 包含数据处理相关的文件,如数据集加载和数据变换。models/
: 包含模型定义和相关工具函数。configs/
: 包含项目的配置文件。scripts/
: 包含训练和测试脚本。README.md
: 项目说明文档。requirements.txt
: 项目依赖文件。
2. 项目的启动文件介绍
训练脚本 train.py
# scripts/train.py
import os
import argparse
from models import pose_attention
from data import dataset, transforms
from configs import config
def main():
parser = argparse.ArgumentParser(description='Train Pose Attention Model')
parser.add_argument('--config', type=str, default='configs/config.yaml', help='Path to config file')
args = parser.parse_args()
cfg = config.load_config(args.config)
model = pose_attention.PoseAttentionModel(cfg)
dataset = dataset.PoseDataset(cfg)
transforms = transforms.get_transforms(cfg)
# 训练逻辑
# ...
if __name__ == '__main__':
main()
测试脚本 test.py
# scripts/test.py
import os
import argparse
from models import pose_attention
from data import dataset, transforms
from configs import config
def main():
parser = argparse.ArgumentParser(description='Test Pose Attention Model')
parser.add_argument('--config', type=str, default='configs/config.yaml', help='Path to config file')
args = parser.parse_args()
cfg = config.load_config(args.config)
model = pose_attention.PoseAttentionModel(cfg)
dataset = dataset.PoseDataset(cfg)
transforms = transforms.get_transforms(cfg)
# 测试逻辑
# ...
if __name__ == '__main__':
main()
3. 项目的配置文件介绍
配置文件 config.yaml
# configs/config.yaml
data:
root: 'path/to/data'
batch_size: 32
num_workers: 4
model:
input_size: 256
num_classes: 17
train:
lr: 0.001
epochs: 100
test:
checkpoint: 'path/to/checkpoint'
配置文件介绍
data
: 数据相关配置,包括数据路径、批大小和数据加载的线程数。model
: 模型相关配置,包括输入尺寸和类别数。train
: 训练相关配置,包括学习率和训练轮数。test
: 测试相关配置,包括模型检查点路径。
以上是 pose-attention
项目的详细使用教程,涵盖了项目的目录结构、启动文件和配置文件的介绍。希望对您有所帮助!
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0299- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
260

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
854
505

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
254
295

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
331
1.08 K

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
397
370

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

deepin linux kernel
C
21
5