tsai 开源项目教程
2026-01-16 09:43:06作者:吴年前Myrtle
项目介绍
tsai 是一个基于 PyTorch 和 fastai 构建的开源深度学习库,专注于时间序列和序列任务。它提供了最先进的技术来处理时间序列分类、回归、预测和插补等任务。tsai 目前由 timeseriesAI 团队积极开发,不断引入新的模型和数据集。
项目快速启动
安装 tsai
首先,确保你已经安装了 Python 和 pip。然后,你可以通过以下命令安装 tsai:
pip install tsai
快速开始示例
以下是一个简单的时间序列分类任务示例:
from tsai.all import *
# 加载数据集
X, y = get_classification_data()
# 创建数据加载器
dls = TSDataLoaders.from_arrays(X, y, bs=64)
# 定义模型
model = TSClassifier(dls, arch='LSTM')
# 训练模型
learn = Learner(dls, model, metrics=[accuracy])
learn.fit_one_cycle(10, 1e-3)
应用案例和最佳实践
时间序列分类
tsai 提供了多种模型用于时间序列分类,包括 LSTM、GRU 和 Transformer 等。以下是一个使用 LSTM 进行时间序列分类的示例:
from tsai.all import *
# 加载数据集
X, y = get_classification_data()
# 创建数据加载器
dls = TSDataLoaders.from_arrays(X, y, bs=64)
# 定义模型
model = TSClassifier(dls, arch='LSTM')
# 训练模型
learn = Learner(dls, model, metrics=[accuracy])
learn.fit_one_cycle(10, 1e-3)
时间序列预测
tsai 也支持时间序列预测任务。以下是一个使用 LSTM 进行时间序列预测的示例:
from tsai.all import *
# 加载数据集
X, y = get_forecasting_data()
# 创建数据加载器
dls = TSDataLoaders.from_arrays(X, y, bs=64)
# 定义模型
model = TSForecaster(dls, arch='LSTM')
# 训练模型
learn = Learner(dls, model, metrics=[mae])
learn.fit_one_cycle(10, 1e-3)
典型生态项目
fastai
fastai 是一个高级深度学习库,提供了简洁的 API 和强大的功能。tsai 基于 fastai 构建,充分利用了 fastai 的易用性和灵活性。
PyTorch
PyTorch 是一个广泛使用的深度学习框架,提供了强大的张量计算和动态计算图功能。tsai 基于 PyTorch 构建,确保了高性能和灵活性。
timeseriesAI
timeseriesAI 是一个专注于时间序列分析的团队,致力于开发和维护 tsai 项目。他们提供了丰富的教程和文档,帮助用户更好地使用 tsai。
通过以上内容,你可以快速了解和使用 tsai 开源项目,并探索其在时间序列分析领域的应用。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
404
暂无简介
Dart
771
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355