AWS Deep Learning Containers发布PyTorch Graviton EC2推理镜像v1.34
AWS Deep Learning Containers(DLC)是亚马逊云科技提供的预配置深度学习容器镜像,它集成了主流深度学习框架、依赖库和工具,让开发者能够快速部署深度学习工作负载而无需手动配置环境。这些容器镜像经过AWS优化,可在云环境中提供高性能的深度学习体验。
近日,AWS发布了PyTorch框架的Graviton处理器专用EC2推理镜像新版本v1.34。该版本基于PyTorch 2.3.0构建,专为运行在AWS Graviton处理器上的EC2实例优化,适用于模型推理场景。
镜像技术细节
本次发布的镜像基于Ubuntu 20.04操作系统,预装了Python 3.11环境,主要包含以下关键组件:
- PyTorch 2.3.0 + CPU版本
- TorchVision 0.18.0
- TorchAudio 2.3.0
- TorchServe 0.11.0模型服务框架
- Torch Model Archiver 0.11.0模型打包工具
镜像中还包含了常用的数据处理和科学计算库,如NumPy 1.26.4、SciPy 1.14.0、OpenCV 4.10.0等,为计算机视觉等AI应用提供了完整的工具链。
环境配置与优化
该镜像针对Graviton处理器(ARM架构)进行了专门优化,包含了必要的ARM64架构依赖库:
- GCC编译器相关库(10和9版本)
- C++标准库(10和9版本)
- 基础系统工具
这些优化确保了PyTorch在Graviton处理器上能够充分发挥性能优势。Graviton处理器是AWS基于ARM架构自主研发的云服务器处理器,相比传统x86架构,在性价比和能效比方面具有优势。
适用场景
这个预构建的容器镜像特别适合以下场景:
- 需要在Graviton处理器EC2实例上部署PyTorch模型推理服务
- 希望快速搭建PyTorch推理环境而无需手动安装配置
- 需要标准化的模型服务环境,便于大规模部署
- 计算机视觉类AI应用的推理服务部署
通过使用这个预构建的容器镜像,开发者可以节省大量环境配置时间,直接专注于模型部署和推理服务的开发工作。同时,AWS的优化确保了服务运行的性能和稳定性。
总结
AWS持续更新其Deep Learning Containers,为开发者提供最新的深度学习框架版本和优化配置。这次发布的PyTorch Graviton专用推理镜像,体现了AWS对ARM架构生态的支持,为开发者提供了更多样化的部署选择。对于已经在使用或计划迁移到Graviton处理器的PyTorch用户,这个镜像将是一个理想的基础环境。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00