首页
/ 探秘巨形表情符号:Giant Emoji 开源项目

探秘巨形表情符号:Giant Emoji 开源项目

2024-05-21 05:58:17作者:咎竹峻Karen

该项目虽已被谷歌创意实验室不再积极维护,但它仍作为一个只读存档模式存在,以便于开发者们能从示例中获取帮助。尽管我们无法处理所有的拉取请求或bug报告,但现有的问题将会以只读模式供参考。欢迎用户进行fork,继续这个有趣的社区驱动的项目。

项目介绍

Giant Emoji 是一个基于openFrameworks的实验性应用程序,它可以将你的面部表情转化为一个巨大的表情符号。这个项目最初在Google I/O 2016大会上亮相。通过实时检测面部特征并进行情感分析,它能够将你的表情实时转化为生动的表情模型。

preview

技术分析

Giant Emoji应用采用了多种算法来检测面部标志点,并对这些点进行情感分析。C++编写的openFrameworks应用会在本地WebView或者远程浏览器中通过JavaScript注入数据,或通过WebSocket传输到远程浏览器,为HTML5 Canvas动画提供准备好的信息。

在本地WebView或远程浏览器中,利用Paper.js创建持久化的矢量对象,用于初始化和动画表情。轻量级的JavaScript动画循环解析传入的JSON面部标志点,并据此模型化相应的X/Y坐标,在调试模式下可查看。然后,将这些标志点和信心分数转换为预设的表情模型(如亲吻脸、大笑脸等),并结合实时的嘴型或唇部几何结构进行增强。

应用场景

Giant Emoji最初设计是为Google I/O 2016大会增添趣味,让用户可以将自己的面孔变成一个巨大的表情符号。这个多线程、高计算密集度的应用程序特别针对Google Pixel C进行了优化,确保其在该设备上的性能表现。

项目分为两部分开发:在Android端的openFrameworks应用负责面部检测(采用C++编写),而Web应用则负责渲染表情(主要使用JavaScript)。

Android openFrameworks应用

gmojiAndroid子目录中的应用可以通过Android Studio 2构建。应用使用了多种库和插件来实现表情识别和跟踪:

  • ofxFaceTracker2 使用dlib库的计算机视觉功能检测和追踪68个面部标志点。
  • ofxAndroidMobileVision 利用Google Mobile Vision API检测眨眼并给出眼睛的眨眼信心得分。
  • 自定义训练的dlib支持向量机模型检测微笑并给出微笑的信心得分。
  • 所有数据都经过了自定义的低通滤波器ofxBiquadFilter处理。

项目特点

  • 跨平台交互:数据既可以通过本地WebView实时展示,也可以通过WebSocket发送到远程机器上,适应不同的运行环境。
  • 实时性:利用先进的计算机视觉技术,提供即时的面部表情转译。
  • 高度可定制:提供了丰富的表情模型和情感分析方法,可以根据需求调整和扩展。
  • 开放源码:虽然项目不再更新,但代码仍然可供开发者学习和二次开发,继承这一创新的想法。

如果你热衷于计算机视觉,或者想要探索人机互动的新方式,Giant Emoji无疑是一个值得尝试的开源项目。不论你是开发者还是爱好者,都可以在这个项目中找到灵感和技术实践的可能性。

热门项目推荐
相关项目推荐

项目优选

收起
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
826
0
redis-sdkredis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
375
32
advanced-javaadvanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
qwerty-learnerqwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
9
1
Yi-CoderYi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
RuoYi-VueRuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
anqicmsanqicms
AnQiCMS 是一款基于Go语言开发,具备高安全性、高性能和易扩展性的企业级内容管理系统。它支持多站点、多语言管理,能够满足全球化跨境运营需求。AnQiCMS 提供灵活的内容发布和模板管理功能,同时,系统内置丰富的利于SEO操作的功能,帮助企业简化运营和内容管理流程。AnQiCMS 将成为您建站的理想选择,在不断变化的市场中保持竞争力。
Go
78
5