探秘巨形表情符号:Giant Emoji 开源项目
该项目虽已被谷歌创意实验室不再积极维护,但它仍作为一个只读存档模式存在,以便于开发者们能从示例中获取帮助。尽管我们无法处理所有的拉取请求或bug报告,但现有的问题将会以只读模式供参考。欢迎用户进行fork,继续这个有趣的社区驱动的项目。
项目介绍
Giant Emoji 是一个基于openFrameworks的实验性应用程序,它可以将你的面部表情转化为一个巨大的表情符号。这个项目最初在Google I/O 2016大会上亮相。通过实时检测面部特征并进行情感分析,它能够将你的表情实时转化为生动的表情模型。

技术分析
Giant Emoji应用采用了多种算法来检测面部标志点,并对这些点进行情感分析。C++编写的openFrameworks应用会在本地WebView或者远程浏览器中通过JavaScript注入数据,或通过WebSocket传输到远程浏览器,为HTML5 Canvas动画提供准备好的信息。
在本地WebView或远程浏览器中,利用Paper.js创建持久化的矢量对象,用于初始化和动画表情。轻量级的JavaScript动画循环解析传入的JSON面部标志点,并据此模型化相应的X/Y坐标,在调试模式下可查看。然后,将这些标志点和信心分数转换为预设的表情模型(如亲吻脸、大笑脸等),并结合实时的嘴型或唇部几何结构进行增强。
应用场景
Giant Emoji最初设计是为Google I/O 2016大会增添趣味,让用户可以将自己的面孔变成一个巨大的表情符号。这个多线程、高计算密集度的应用程序特别针对Google Pixel C进行了优化,确保其在该设备上的性能表现。
项目分为两部分开发:在Android端的openFrameworks应用负责面部检测(采用C++编写),而Web应用则负责渲染表情(主要使用JavaScript)。
Android openFrameworks应用
在gmojiAndroid子目录中的应用可以通过Android Studio 2构建。应用使用了多种库和插件来实现表情识别和跟踪:
- ofxFaceTracker2 使用dlib库的计算机视觉功能检测和追踪68个面部标志点。
- ofxAndroidMobileVision 利用Google Mobile Vision API检测眨眼并给出眼睛的眨眼信心得分。
- 自定义训练的dlib支持向量机模型检测微笑并给出微笑的信心得分。
- 所有数据都经过了自定义的低通滤波器ofxBiquadFilter处理。
项目特点
- 跨平台交互:数据既可以通过本地WebView实时展示,也可以通过WebSocket发送到远程机器上,适应不同的运行环境。
- 实时性:利用先进的计算机视觉技术,提供即时的面部表情转译。
- 高度可定制:提供了丰富的表情模型和情感分析方法,可以根据需求调整和扩展。
- 开放源码:虽然项目不再更新,但代码仍然可供开发者学习和二次开发,继承这一创新的想法。
如果你热衷于计算机视觉,或者想要探索人机互动的新方式,Giant Emoji无疑是一个值得尝试的开源项目。不论你是开发者还是爱好者,都可以在这个项目中找到灵感和技术实践的可能性。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0130
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00