背景subtract cnt项目使用教程
2025-05-17 18:14:01作者:冯梦姬Eddie
1. 项目介绍
BackgroundSubtractorCNT 是一个针对 OpenCV 的背景减除算法的优化实现。它提供了一个比 OpenCV 默认的背景减除解决方案更快的新算法。这个项目被设计为 OpenCV 3.1.0 及以上版本的即插即用式 API。在没有 NVidia CUDA 加速的低规格硬件上,它比 OpenCV 中的其他背景减除方案速度要快得多。
2. 项目快速启动
以下是在 Linux 系统下快速启动项目的步骤:
首先,确保已经安装了所需的依赖项,包括 cmake、git(可选,用于从 GitHub 下载源代码)、swig(可选,用于构建 Python 扩展)。
# 克隆项目仓库
git clone https://github.com/sagi-z/BackgroundSubtractorCNT.git --single-branch
cd BackgroundSubtractorCNT
# 创建构建目录并进入
mkdir build
cd build
# 默认构建配置(发布版本,静态库,不带 C++ 演示和 Python 扩展)
cmake ..
make
如果要修改默认构建选项,比如启用测试、构建共享库或 Python 扩展,可以使用以下命令:
# 修改默认构建选项
cmake -DBUILD_TEST=ON -DBUILD_SHARED_LIBS=ON -DPYTHON_EXTENSION=ON -DCMAKE_BUILD_TYPE=DEBUG ..
make
对于 C++ 的安装,可以将 bgsubcnt.cpp 复制到您的源代码目录中,将 bgsubcnt.h 复制到头文件目录中。
对于 Linux 系统的 Python 安装,可以使用以下命令:
# 安装 Python 扩展(从构建目录)
sudo make install
或者使用更干净的方式来安装:
# 使用 CPack 打包并安装
cpack -G DEB
sudo dpkg -i ./bgsubcnt-1.1.3-Linux.deb
3. 应用案例和最佳实践
在视频监控、运动检测等应用中,背景减除是一个常见的步骤。以下是一个简单的使用 BackgroundSubtractorCNT 的案例:
#include <opencv2/opencv.hpp>
#include "bgsubcnt.h"
int main() {
    cv::VideoCapture capture("input_video.avi");
    cv::Ptr<bgsubcnt::BackgroundSubtractor> fgbg = bgsubcnt::createBackgroundSubtractor();
    while (true) {
        cv::Mat frame;
        capture >> frame;
        if (frame.empty())
            break;
        cv::Mat fgmask;
        fgbg->apply(frame, fgmask);
        // 显示前景掩码
        cv::imshow("Foreground", fgmask);
        // 按 'q' 键退出循环
        if (cv::waitKey(1) == 'q')
            break;
    }
    return 0;
}
在此代码中,我们创建了一个 BackgroundSubtractor 对象,并使用 apply 方法来获取前景掩码。
4. 典型生态项目
- OpenCV:
BackgroundSubtractorCNT是对 OpenCV 的一个扩展,OpenCV 是一个跨平台的计算机视觉库。 - Python:项目支持 Python 绑定,允许 Python 开发者使用这个库。
 - CMake:构建系统使用 CMake,这使得项目可以在多种平台上编译和构建。
 
以上就是 BackgroundSubtractorCNT 的使用教程。希望对您有所帮助!
登录后查看全文 
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
 
最新内容推荐
 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
278
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
222
302
Ascend Extension for PyTorch
Python
105
133
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
599
161
暂无简介
Dart
568
126
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
250
14
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
仓颉编译器源码及 cjdb 调试工具。
C++
118
103
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
446