背景subtract cnt项目使用教程
2025-05-17 06:59:54作者:冯梦姬Eddie
1. 项目介绍
BackgroundSubtractorCNT 是一个针对 OpenCV 的背景减除算法的优化实现。它提供了一个比 OpenCV 默认的背景减除解决方案更快的新算法。这个项目被设计为 OpenCV 3.1.0 及以上版本的即插即用式 API。在没有 NVidia CUDA 加速的低规格硬件上,它比 OpenCV 中的其他背景减除方案速度要快得多。
2. 项目快速启动
以下是在 Linux 系统下快速启动项目的步骤:
首先,确保已经安装了所需的依赖项,包括 cmake、git(可选,用于从 GitHub 下载源代码)、swig(可选,用于构建 Python 扩展)。
# 克隆项目仓库
git clone https://github.com/sagi-z/BackgroundSubtractorCNT.git --single-branch
cd BackgroundSubtractorCNT
# 创建构建目录并进入
mkdir build
cd build
# 默认构建配置(发布版本,静态库,不带 C++ 演示和 Python 扩展)
cmake ..
make
如果要修改默认构建选项,比如启用测试、构建共享库或 Python 扩展,可以使用以下命令:
# 修改默认构建选项
cmake -DBUILD_TEST=ON -DBUILD_SHARED_LIBS=ON -DPYTHON_EXTENSION=ON -DCMAKE_BUILD_TYPE=DEBUG ..
make
对于 C++ 的安装,可以将 bgsubcnt.cpp 复制到您的源代码目录中,将 bgsubcnt.h 复制到头文件目录中。
对于 Linux 系统的 Python 安装,可以使用以下命令:
# 安装 Python 扩展(从构建目录)
sudo make install
或者使用更干净的方式来安装:
# 使用 CPack 打包并安装
cpack -G DEB
sudo dpkg -i ./bgsubcnt-1.1.3-Linux.deb
3. 应用案例和最佳实践
在视频监控、运动检测等应用中,背景减除是一个常见的步骤。以下是一个简单的使用 BackgroundSubtractorCNT 的案例:
#include <opencv2/opencv.hpp>
#include "bgsubcnt.h"
int main() {
cv::VideoCapture capture("input_video.avi");
cv::Ptr<bgsubcnt::BackgroundSubtractor> fgbg = bgsubcnt::createBackgroundSubtractor();
while (true) {
cv::Mat frame;
capture >> frame;
if (frame.empty())
break;
cv::Mat fgmask;
fgbg->apply(frame, fgmask);
// 显示前景掩码
cv::imshow("Foreground", fgmask);
// 按 'q' 键退出循环
if (cv::waitKey(1) == 'q')
break;
}
return 0;
}
在此代码中,我们创建了一个 BackgroundSubtractor 对象,并使用 apply 方法来获取前景掩码。
4. 典型生态项目
- OpenCV:
BackgroundSubtractorCNT是对 OpenCV 的一个扩展,OpenCV 是一个跨平台的计算机视觉库。 - Python:项目支持 Python 绑定,允许 Python 开发者使用这个库。
- CMake:构建系统使用 CMake,这使得项目可以在多种平台上编译和构建。
以上就是 BackgroundSubtractorCNT 的使用教程。希望对您有所帮助!
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C075
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
462
3.44 K
暂无简介
Dart
713
171
Ascend Extension for PyTorch
Python
269
309
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
190
75
React Native鸿蒙化仓库
JavaScript
284
331
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
843
421
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
454
130
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
105
119