背景subtract cnt项目使用教程
2025-05-17 12:15:22作者:冯梦姬Eddie
1. 项目介绍
BackgroundSubtractorCNT 是一个针对 OpenCV 的背景减除算法的优化实现。它提供了一个比 OpenCV 默认的背景减除解决方案更快的新算法。这个项目被设计为 OpenCV 3.1.0 及以上版本的即插即用式 API。在没有 NVidia CUDA 加速的低规格硬件上,它比 OpenCV 中的其他背景减除方案速度要快得多。
2. 项目快速启动
以下是在 Linux 系统下快速启动项目的步骤:
首先,确保已经安装了所需的依赖项,包括 cmake、git(可选,用于从 GitHub 下载源代码)、swig(可选,用于构建 Python 扩展)。
# 克隆项目仓库
git clone https://github.com/sagi-z/BackgroundSubtractorCNT.git --single-branch
cd BackgroundSubtractorCNT
# 创建构建目录并进入
mkdir build
cd build
# 默认构建配置(发布版本,静态库,不带 C++ 演示和 Python 扩展)
cmake ..
make
如果要修改默认构建选项,比如启用测试、构建共享库或 Python 扩展,可以使用以下命令:
# 修改默认构建选项
cmake -DBUILD_TEST=ON -DBUILD_SHARED_LIBS=ON -DPYTHON_EXTENSION=ON -DCMAKE_BUILD_TYPE=DEBUG ..
make
对于 C++ 的安装,可以将 bgsubcnt.cpp 复制到您的源代码目录中,将 bgsubcnt.h 复制到头文件目录中。
对于 Linux 系统的 Python 安装,可以使用以下命令:
# 安装 Python 扩展(从构建目录)
sudo make install
或者使用更干净的方式来安装:
# 使用 CPack 打包并安装
cpack -G DEB
sudo dpkg -i ./bgsubcnt-1.1.3-Linux.deb
3. 应用案例和最佳实践
在视频监控、运动检测等应用中,背景减除是一个常见的步骤。以下是一个简单的使用 BackgroundSubtractorCNT 的案例:
#include <opencv2/opencv.hpp>
#include "bgsubcnt.h"
int main() {
cv::VideoCapture capture("input_video.avi");
cv::Ptr<bgsubcnt::BackgroundSubtractor> fgbg = bgsubcnt::createBackgroundSubtractor();
while (true) {
cv::Mat frame;
capture >> frame;
if (frame.empty())
break;
cv::Mat fgmask;
fgbg->apply(frame, fgmask);
// 显示前景掩码
cv::imshow("Foreground", fgmask);
// 按 'q' 键退出循环
if (cv::waitKey(1) == 'q')
break;
}
return 0;
}
在此代码中,我们创建了一个 BackgroundSubtractor 对象,并使用 apply 方法来获取前景掩码。
4. 典型生态项目
- OpenCV:
BackgroundSubtractorCNT是对 OpenCV 的一个扩展,OpenCV 是一个跨平台的计算机视觉库。 - Python:项目支持 Python 绑定,允许 Python 开发者使用这个库。
- CMake:构建系统使用 CMake,这使得项目可以在多种平台上编译和构建。
以上就是 BackgroundSubtractorCNT 的使用教程。希望对您有所帮助!
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C092
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
474
3.54 K
React Native鸿蒙化仓库
JavaScript
287
339
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
224
92
Ascend Extension for PyTorch
Python
283
316
暂无简介
Dart
723
174
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
441
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
699
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19