ANN-Benchmarks 内存限制问题分析与解决方案
2025-06-08 19:51:38作者:沈韬淼Beryl
问题背景
在 ANN-Benchmarks 项目中,当用户使用并行模式运行算法基准测试时,发现存在内存分配不均的问题。具体表现为:在 AWS r6i.16xlarge 机器(512GB 内存)上运行 31 个并行任务时,预期每个算法应获得约 16GB 内存,但实际分配的内存却明显不足(约 11GB),导致部分算法因内存不足而失败(错误代码 137)。
问题根源分析
经过代码审查,发现问题出在 ann_benchmarks/main.py
文件中的内存限制计算逻辑。当前实现使用 psutil.virtual_memory().available
来计算可用内存,这会导致以下问题:
-
动态内存计算问题:
available
返回的是当前可用内存,而非总内存。当第一批容器启动后,系统内存被占用,后续容器启动时可用内存减少,导致分配不均。 -
公平性问题:不同批次的算法获得的内存资源不同,影响基准测试的公平性和可比性。
技术解决方案
原实现分析
mem_limit = int((psutil.virtual_memory().available - memory_margin) / args.parallelism)
这种实现方式在共享机器环境下是合理的,因为它基于实际可用内存分配资源。但对于专用基准测试机器,这种动态分配方式会导致测试结果不可比。
改进方案
建议修改为基于总内存的计算方式:
mem_limit = int((psutil.virtual_memory().total - memory_margin) / args.parallelism)
这种修改确保:
- 所有算法获得相同的内存配额
- 在专用测试机器上提供更一致的测试环境
- 避免因内存分配不均导致的算法失败
实现建议
更完善的解决方案是将内存限制计算移到 run_worker
函数中,并在程序启动时确定固定的内存配额。这样可以:
- 保持内存限制的一致性
- 便于调试和问题追踪
- 提供更可预测的资源分配
项目实践意义
对于 ANN 算法基准测试,内存分配的一致性至关重要,因为:
- 许多近似最近邻算法对内存敏感
- 不公平的内存分配会导致算法性能评估失真
- 内存不足可能导致算法无法完成或产生次优结果
这一改进将提升 ANN-Benchmarks 项目的测试可靠性和结果可比性,特别是在大规模数据集和高并行度场景下。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~052CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0330- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
178
263

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
868
514

openGauss kernel ~ openGauss is an open source relational database management system
C++
130
183

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
288
323

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
373

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
600
58

基于可以运行在OpenHarmony的git,提供git客户端操作能力
ArkTS
10
3