ANN-Benchmarks 内存限制问题分析与解决方案
2025-06-08 13:54:23作者:沈韬淼Beryl
问题背景
在 ANN-Benchmarks 项目中,当用户使用并行模式运行算法基准测试时,发现存在内存分配不均的问题。具体表现为:在 AWS r6i.16xlarge 机器(512GB 内存)上运行 31 个并行任务时,预期每个算法应获得约 16GB 内存,但实际分配的内存却明显不足(约 11GB),导致部分算法因内存不足而失败(错误代码 137)。
问题根源分析
经过代码审查,发现问题出在 ann_benchmarks/main.py 文件中的内存限制计算逻辑。当前实现使用 psutil.virtual_memory().available 来计算可用内存,这会导致以下问题:
-
动态内存计算问题:
available返回的是当前可用内存,而非总内存。当第一批容器启动后,系统内存被占用,后续容器启动时可用内存减少,导致分配不均。 -
公平性问题:不同批次的算法获得的内存资源不同,影响基准测试的公平性和可比性。
技术解决方案
原实现分析
mem_limit = int((psutil.virtual_memory().available - memory_margin) / args.parallelism)
这种实现方式在共享机器环境下是合理的,因为它基于实际可用内存分配资源。但对于专用基准测试机器,这种动态分配方式会导致测试结果不可比。
改进方案
建议修改为基于总内存的计算方式:
mem_limit = int((psutil.virtual_memory().total - memory_margin) / args.parallelism)
这种修改确保:
- 所有算法获得相同的内存配额
- 在专用测试机器上提供更一致的测试环境
- 避免因内存分配不均导致的算法失败
实现建议
更完善的解决方案是将内存限制计算移到 run_worker 函数中,并在程序启动时确定固定的内存配额。这样可以:
- 保持内存限制的一致性
- 便于调试和问题追踪
- 提供更可预测的资源分配
项目实践意义
对于 ANN 算法基准测试,内存分配的一致性至关重要,因为:
- 许多近似最近邻算法对内存敏感
- 不公平的内存分配会导致算法性能评估失真
- 内存不足可能导致算法无法完成或产生次优结果
这一改进将提升 ANN-Benchmarks 项目的测试可靠性和结果可比性,特别是在大规模数据集和高并行度场景下。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
操作系统概念第六版PDF资源全面指南:适用场景与使用教程 RadiAnt DICOM Viewer 2021.2:专业医学影像阅片软件的全面指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 Python开发者的macOS终极指南:VSCode安装配置全攻略 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
376
3.26 K
暂无简介
Dart
619
140
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
479
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
262
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.09 K
619
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
790
77