OpenGVLab VideoChat2-Mistral模型训练中的NaN损失问题分析与解决方案
2025-06-25 05:18:46作者:管翌锬
问题背景
在使用OpenGVLab的VideoChat2-Mistral模型进行第三阶段训练时,部分开发者遇到了训练初期即出现NaN损失值的问题。具体表现为:在第一个迭代周期后,图像和视频的损失值均变为NaN,即使尝试降低学习率也无法解决。
问题分析
NaN损失通常与数值不稳定有关,在深度学习训练中可能由以下原因导致:
- 梯度爆炸:过大的梯度导致参数更新幅度过大
- 数值精度不足:使用低精度浮点数时容易出现数值下溢或上溢
- 模型初始化问题:某些参数初始化不当
- 损失函数计算异常
解决方案
1. 使用bfloat16精度
将模型精度从默认的fp16改为bfloat16可以有效解决NaN问题:
# 修改videochat2_it_mistral.py中的模型加载部分
torch_dtype=torch.bfloat16
# 修改训练脚本中的自动混合精度设置
with torch.cuda.amp.autocast(enabled=config.fp16, dtype=torch.bfloat16)
bfloat16相比fp16具有更大的指数范围,虽然牺牲了一些精度,但能更好地防止数值溢出问题。
2. 正确设置混合精度训练
混合精度训练需要特别注意:
- 当使用bfloat16时,建议保持
fp16=True以启用混合精度训练 - 确保模型在forward过程中正确使用
maybe_autocast()上下文
3. 检查依赖库版本
版本冲突是导致训练异常的常见原因:
- 确保使用正确版本的
peft和transformers库 - 推荐使用项目指定的版本,避免因自动更新导致兼容性问题
技术建议
- 内存优化:虽然bfloat16和fp32都能稳定训练,但在显存充足的情况下,fp32通常更稳定
- 训练监控:建议在训练初期密切监控损失值变化,及时发现问题
- 梯度裁剪:对于可能出现梯度爆炸的场景,可以添加梯度裁剪作为额外保护
总结
VideoChat2-Mistral模型的训练稳定性可以通过正确配置数值精度和混合精度训练来保证。开发者遇到NaN损失问题时,优先考虑切换到bfloat16精度并验证依赖库版本,这通常能有效解决问题。同时,理解不同精度格式的特点和适用场景,有助于在不同硬件条件下获得最佳训练效果。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
246
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
313
React Native鸿蒙化仓库
JavaScript
262
324
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
655
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
330
137