OpenGVLab VideoChat2-Mistral模型训练中的NaN损失问题分析与解决方案
2025-06-25 06:48:40作者:管翌锬
问题背景
在使用OpenGVLab的VideoChat2-Mistral模型进行第三阶段训练时,部分开发者遇到了训练初期即出现NaN损失值的问题。具体表现为:在第一个迭代周期后,图像和视频的损失值均变为NaN,即使尝试降低学习率也无法解决。
问题分析
NaN损失通常与数值不稳定有关,在深度学习训练中可能由以下原因导致:
- 梯度爆炸:过大的梯度导致参数更新幅度过大
- 数值精度不足:使用低精度浮点数时容易出现数值下溢或上溢
- 模型初始化问题:某些参数初始化不当
- 损失函数计算异常
解决方案
1. 使用bfloat16精度
将模型精度从默认的fp16改为bfloat16可以有效解决NaN问题:
# 修改videochat2_it_mistral.py中的模型加载部分
torch_dtype=torch.bfloat16
# 修改训练脚本中的自动混合精度设置
with torch.cuda.amp.autocast(enabled=config.fp16, dtype=torch.bfloat16)
bfloat16相比fp16具有更大的指数范围,虽然牺牲了一些精度,但能更好地防止数值溢出问题。
2. 正确设置混合精度训练
混合精度训练需要特别注意:
- 当使用bfloat16时,建议保持
fp16=True以启用混合精度训练 - 确保模型在forward过程中正确使用
maybe_autocast()上下文
3. 检查依赖库版本
版本冲突是导致训练异常的常见原因:
- 确保使用正确版本的
peft和transformers库 - 推荐使用项目指定的版本,避免因自动更新导致兼容性问题
技术建议
- 内存优化:虽然bfloat16和fp32都能稳定训练,但在显存充足的情况下,fp32通常更稳定
- 训练监控:建议在训练初期密切监控损失值变化,及时发现问题
- 梯度裁剪:对于可能出现梯度爆炸的场景,可以添加梯度裁剪作为额外保护
总结
VideoChat2-Mistral模型的训练稳定性可以通过正确配置数值精度和混合精度训练来保证。开发者遇到NaN损失问题时,优先考虑切换到bfloat16精度并验证依赖库版本,这通常能有效解决问题。同时,理解不同精度格式的特点和适用场景,有助于在不同硬件条件下获得最佳训练效果。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C045
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0122
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
699
162
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
696
374
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
675
Ascend Extension for PyTorch
Python
243
281
React Native鸿蒙化仓库
JavaScript
271
328