OpenGVLab VideoChat2-Mistral模型训练中的NaN损失问题分析与解决方案
2025-06-25 08:38:46作者:管翌锬
问题背景
在使用OpenGVLab的VideoChat2-Mistral模型进行第三阶段训练时,部分开发者遇到了训练初期即出现NaN损失值的问题。具体表现为:在第一个迭代周期后,图像和视频的损失值均变为NaN,即使尝试降低学习率也无法解决。
问题分析
NaN损失通常与数值不稳定有关,在深度学习训练中可能由以下原因导致:
- 梯度爆炸:过大的梯度导致参数更新幅度过大
- 数值精度不足:使用低精度浮点数时容易出现数值下溢或上溢
- 模型初始化问题:某些参数初始化不当
- 损失函数计算异常
解决方案
1. 使用bfloat16精度
将模型精度从默认的fp16改为bfloat16可以有效解决NaN问题:
# 修改videochat2_it_mistral.py中的模型加载部分
torch_dtype=torch.bfloat16
# 修改训练脚本中的自动混合精度设置
with torch.cuda.amp.autocast(enabled=config.fp16, dtype=torch.bfloat16)
bfloat16相比fp16具有更大的指数范围,虽然牺牲了一些精度,但能更好地防止数值溢出问题。
2. 正确设置混合精度训练
混合精度训练需要特别注意:
- 当使用bfloat16时,建议保持
fp16=True
以启用混合精度训练 - 确保模型在forward过程中正确使用
maybe_autocast()
上下文
3. 检查依赖库版本
版本冲突是导致训练异常的常见原因:
- 确保使用正确版本的
peft
和transformers
库 - 推荐使用项目指定的版本,避免因自动更新导致兼容性问题
技术建议
- 内存优化:虽然bfloat16和fp32都能稳定训练,但在显存充足的情况下,fp32通常更稳定
- 训练监控:建议在训练初期密切监控损失值变化,及时发现问题
- 梯度裁剪:对于可能出现梯度爆炸的场景,可以添加梯度裁剪作为额外保护
总结
VideoChat2-Mistral模型的训练稳定性可以通过正确配置数值精度和混合精度训练来保证。开发者遇到NaN损失问题时,优先考虑切换到bfloat16精度并验证依赖库版本,这通常能有效解决问题。同时,理解不同精度格式的特点和适用场景,有助于在不同硬件条件下获得最佳训练效果。
登录后查看全文
热门项目推荐
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0118AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 JavaWeb企业门户网站源码 - 企业级门户系统开发指南 WebVideoDownloader:高效网页视频抓取工具全面使用指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 STM32到GD32项目移植完全指南:从兼容性到实战技巧 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
225
2.27 K

React Native鸿蒙化仓库
JavaScript
211
287

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

暂无简介
Dart
526
116

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
987
583

openGauss kernel ~ openGauss is an open source relational database management system
C++
148
197

GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】
Jinja
46
0

ArkUI-X adaptation to Android | ArkUI-X支持Android平台的适配层
C++
39
55

ArkUI-X adaptation to iOS | ArkUI-X支持iOS平台的适配层
Objective-C++
19
44