IREE项目中GPU卷积计算数值精度问题的分析与解决
2025-06-26 14:37:13作者:柯茵沙
问题背景
在深度学习框架IREE中,开发者发现当尝试将反向卷积操作分解为正向卷积操作时,某些特定的卷积布局会导致显著的数值精度问题。具体表现为在ROCm后端上运行时,计算结果与预期不符,而在LLVM-CPU后端上则能得到正确结果。
问题现象
以一个简单的1D卷积为例,输入张量形状为1x3x2,滤波器形状为2x2x2。当使用特定输入值[[[0,1],[0,0],[0,0]]和滤波器值[[[1,2],[3,4]],[[5,6],[7,8]]时,GPU计算结果为[[3 4][0 0]],而正确结果应为[[5 6][0 0]]。
技术分析
通过深入分析,发现问题根源在于卷积到矩阵乘法(im2col)转换过程中对滤波器维度的处理不当。具体表现为:
- 输入张量和滤波器张量的维度布局不匹配
- 在im2col转换时,滤波器维度的隐式转置未被正确处理
- 后续的填充(padding)操作进一步放大了数值误差
解决方案探讨
开发团队提出了几种可能的解决方案:
- 添加元数据方案:扩展im2col操作,增加描述滤波器维度布局的元数据信息,在im2col分解阶段正确处理维度转置
- 显式转置方案:在滤波器张量被折叠前插入显式的转置操作
- 结果转置方案:扩展im2col结果的K维度,然后对结果进行转置
经过评估,团队最终选择了第一种方案,因为它能够保持im2col操作现有设计的一致性,虽然需要添加一些元数据处理的代码,但从长远来看最为清晰和可维护。
实现细节
在具体实现中,开发团队:
- 修改了im2col分解代码以正确处理输入和滤波器之间的隐式转置
- 添加了必要的维度布局元数据
- 确保在填充操作前完成所有维度转换
- 验证了数值结果在各种情况下的正确性
经验总结
这个问题的解决过程为IREE项目提供了宝贵的经验:
- 卷积操作的维度布局处理需要特别小心,特别是在不同后端之间
- 隐式假设可能导致难以发现的数值问题
- 元数据的显式表达虽然增加初期开发成本,但能提高长期可维护性
- 多后端验证是发现潜在问题的重要手段
这个问题也提醒我们,在深度学习编译器开发中,数学正确性验证必须与性能优化同等重视,特别是在涉及复杂操作分解和转换的场景下。
后续工作
基于此次经验,IREE团队计划:
- 完善卷积相关操作的文档说明
- 增加更多维度和布局组合的测试用例
- 考虑在编译器中加入更多的数值正确性检查
- 优化im2col操作的通用性,以支持更多卷积变体
这个问题的解决不仅修复了特定情况下的数值错误,也为IREE项目处理类似布局问题提供了可靠的技术方案。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C080
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
465
3.46 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
196
80
暂无简介
Dart
715
172
Ascend Extension for PyTorch
Python
273
310
React Native鸿蒙化仓库
JavaScript
285
331
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
843
424
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
692
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
106
120