在pgvecto.rs项目中集成Azure OpenAI服务的实践指南
2025-07-05 03:54:31作者:伍霜盼Ellen
随着大语言模型技术的快速发展,许多开发者希望将Azure OpenAI服务与向量数据库pgvecto.rs结合使用。本文将详细介绍如何通过LlamaIndex框架实现这一集成方案。
核心配置方法
要实现Azure OpenAI与pgvecto.rs的集成,关键在于正确配置LlamaIndex的设置。与直接使用OpenAI API不同,Azure OpenAI服务需要特定的认证参数:
-
基础参数配置:
api_key
: Azure OpenAI服务的访问密钥azure_endpoint
: 格式为https://<资源名称>.openai.azure.com/
api_version
: 推荐使用2023-07-01-preview
版本
-
LLM模型设置:
from llama_index.llms import AzureOpenAI
llm = AzureOpenAI(
model="gpt-35-turbo-16k",
deployment_name="自定义部署名称",
api_key=api_key,
azure_endpoint=azure_endpoint,
api_version=api_version
)
- 嵌入模型配置:
from llama_index.embeddings import AzureOpenAIEmbedding
embed_model = AzureOpenAIEmbedding(
model="text-embedding-ada-002",
deployment_name="自定义嵌入模型名称",
api_key=api_key,
azure_endpoint=azure_endpoint,
api_version=api_version
)
系统集成方案
完成基础配置后,需要通过LlamaIndex的Settings类将这些设置应用到整个系统:
from llama_index.core import Settings
Settings.llm = llm
Settings.embed_model = embed_model
这种全局设置方式确保了后续所有操作(如文档加载、索引构建等)都会自动使用配置好的Azure OpenAI服务。
实际应用示例
配置完成后,可以结合pgvecto.rs进行文档处理:
from llama_index.core import VectorStoreIndex
from llama_index.storage.storage_context import StorageContext
from llama_index.vector_stores import PGVectoRsStore
# 初始化向量存储
vector_store = PGVectoRsStore(client=client)
storage_context = StorageContext.from_defaults(vector_store=vector_store)
# 构建向量索引
index = VectorStoreIndex.from_documents(
documents,
storage_context=storage_context
)
注意事项
- 部署要求:需要在Azure上分别部署聊天补全模型和嵌入模型
- 模型兼容性:确保使用的模型名称与Azure上的部署名称一致
- 版本控制:注意API版本可能会影响某些功能的可用性
通过以上配置,开发者可以充分利用Azure OpenAI服务的稳定性和pgvecto.rs的高效向量检索能力,构建强大的AI应用系统。这种集成方案特别适合企业级应用场景,既能保证数据安全性,又能获得优质的AI服务体验。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
261

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
860
511

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
259
300

deepin linux kernel
C
22
5

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
596
57

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K