Tach项目v0.26.0版本发布:模块路径通配符支持与性能优化
Tach是一个现代化的前端构建工具,专注于提供高效的模块打包和依赖管理能力。作为一款轻量级工具,Tach在保持简洁架构的同时,不断引入创新功能来提升开发者的工作效率。
本次发布的v0.26.0版本带来了两项重要改进:模块路径通配符支持和多项性能优化。这些改进使得项目设置更加灵活,同时提升了构建过程的执行效率。
模块路径通配符支持
新版本的核心特性是引入了对模块路径通配符的全面支持。开发者现在可以在设置文件中使用glob模式来指定模块路径,这大大简化了大型项目中模块引用的管理。
主要改进点
-
模块路径的glob模式匹配:现在可以直接在设置中使用如
src/modules/*/index.js这样的模式来批量引用模块,而不需要逐个列出每个模块路径。 -
依赖项的glob模式支持:不仅模块路径,依赖项的声明也支持glob模式,使得依赖管理更加灵活。
-
特定模块覆盖机制:当存在glob匹配和特定模块声明冲突时,特定模块声明具有更高优先级,这为特殊情况处理提供了便利。
实际应用场景
假设一个项目有以下结构:
src/
modules/
auth/
index.js
dashboard/
index.js
settings/
index.js
在旧版本中,需要这样设置:
modules: [
'src/modules/auth/index.js',
'src/modules/dashboard/index.js',
'src/modules/settings/index.js'
]
而在v0.26.0中,可以简化为:
modules: ['src/modules/*/index.js']
如果需要对某个模块进行特殊设置,可以这样写:
modules: [
'src/modules/*/index.js',
{
path: 'src/modules/auth/index.js',
// 特殊设置
}
]
性能优化
除了功能增强外,v0.26.0版本还对glob解析过程进行了多项性能优化:
-
缓存机制改进:优化了glob模式匹配结果的缓存策略,减少了重复的文件系统查询。
-
并行处理:对多个glob模式的解析过程进行了并行化处理,充分利用多核CPU资源。
-
路径解析优化:改进了路径规范化算法,减少了不必要的字符串操作。
这些优化使得在大型项目中使用glob模式时,构建速度有明显提升,特别是在冷启动场景下性能改善更为显著。
升级建议
对于现有项目,升级到v0.26.0版本是平滑的,不需要特别的迁移步骤。但建议开发者:
-
检查现有设置文件,考虑将重复的模块路径声明替换为glob模式,以简化设置。
-
对于性能敏感的项目,可以在升级后对比构建时间,特别是模块数量较多的项目应该能观察到明显的性能提升。
-
注意glob模式的书写规范,避免过于宽泛的模式匹配到意外文件。
Tach项目团队将持续关注开发者反馈,不断优化工具链,为前端开发提供更高效的支持。v0.26.0版本的这些改进,特别是glob模式支持,将显著提升大型项目的可维护性和开发体验。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C085
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0136
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00