DropEdge 开源项目使用教程
1. 项目介绍
DropEdge 是一个用于深度图卷积网络(Graph Convolutional Networks, GCNs)的 PyTorch 实现项目。该项目旨在通过一种名为 DropEdge 的新技术来缓解深度 GCNs 中的过拟合(over-fitting)和过平滑(over-smoothing)问题。DropEdge 的核心思想是在每个训练周期中随机移除输入图中的部分边,从而起到数据增强和消息传递减少的作用。该技术可以与多种骨干模型(如 GCN、ResGCN、GraphSAGE 和 JKNet)结合使用,以提升性能。
2. 项目快速启动
2.1 环境准备
首先,确保你已经安装了 Python 3.6.2 或更高版本。然后,安装项目所需的依赖包:
pip install -r requirements.txt
2.2 运行示例
项目提供了一个简单的示例脚本来运行 DropEdge 模型。你可以通过以下命令快速启动:
sh run.sh
2.3 自定义运行
如果你想自定义运行参数,可以参考 scripts 文件夹中的脚本。例如,运行 Cora 数据集上的 IncepGCN 模型:
sh scripts/supervised/cora_IncepGCN.sh
3. 应用案例和最佳实践
3.1 数据集准备
DropEdge 支持多种基准数据集,如 Cora、Citeseer 和 Pubmed。数据格式与 GCN 相同,项目提供了这些数据集的示例(位于 data 文件夹中)。你可以使用这些数据集来验证模型的性能。
3.2 模型选择
DropEdge 可以与多种骨干模型结合使用,包括 GCN、ResGCN、GraphSAGE 和 JKNet。你可以根据具体任务选择合适的模型,并通过 DropEdge 来提升其性能。
3.3 结果分析
项目提供了详细的基准测试结果,展示了不同骨干模型在不同层数下使用 DropEdge 前后的性能对比。你可以参考这些结果来选择最佳的模型配置。
4. 典型生态项目
4.1 PyTorch Geometric
PyTorch Geometric 是一个用于处理图数据的 PyTorch 扩展库,提供了丰富的图神经网络模型和工具。DropEdge 可以与 PyTorch Geometric 结合使用,进一步提升图神经网络的性能。
4.2 DGL (Deep Graph Library)
DGL 是另一个流行的图神经网络库,支持多种图神经网络模型和算法。DropEdge 的实现可以迁移到 DGL 中,以支持更广泛的图神经网络应用场景。
4.3 TensorFlow GNN
如果你使用 TensorFlow 进行开发,可以参考 TensorFlow GNN 项目,将 DropEdge 的思路应用到 TensorFlow 的图神经网络模型中。
通过以上模块的介绍,你应该能够快速上手 DropEdge 项目,并将其应用到实际的图神经网络任务中。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00