DropEdge 开源项目使用教程
1. 项目介绍
DropEdge 是一个用于深度图卷积网络(Graph Convolutional Networks, GCNs)的 PyTorch 实现项目。该项目旨在通过一种名为 DropEdge 的新技术来缓解深度 GCNs 中的过拟合(over-fitting)和过平滑(over-smoothing)问题。DropEdge 的核心思想是在每个训练周期中随机移除输入图中的部分边,从而起到数据增强和消息传递减少的作用。该技术可以与多种骨干模型(如 GCN、ResGCN、GraphSAGE 和 JKNet)结合使用,以提升性能。
2. 项目快速启动
2.1 环境准备
首先,确保你已经安装了 Python 3.6.2 或更高版本。然后,安装项目所需的依赖包:
pip install -r requirements.txt
2.2 运行示例
项目提供了一个简单的示例脚本来运行 DropEdge 模型。你可以通过以下命令快速启动:
sh run.sh
2.3 自定义运行
如果你想自定义运行参数,可以参考 scripts 文件夹中的脚本。例如,运行 Cora 数据集上的 IncepGCN 模型:
sh scripts/supervised/cora_IncepGCN.sh
3. 应用案例和最佳实践
3.1 数据集准备
DropEdge 支持多种基准数据集,如 Cora、Citeseer 和 Pubmed。数据格式与 GCN 相同,项目提供了这些数据集的示例(位于 data 文件夹中)。你可以使用这些数据集来验证模型的性能。
3.2 模型选择
DropEdge 可以与多种骨干模型结合使用,包括 GCN、ResGCN、GraphSAGE 和 JKNet。你可以根据具体任务选择合适的模型,并通过 DropEdge 来提升其性能。
3.3 结果分析
项目提供了详细的基准测试结果,展示了不同骨干模型在不同层数下使用 DropEdge 前后的性能对比。你可以参考这些结果来选择最佳的模型配置。
4. 典型生态项目
4.1 PyTorch Geometric
PyTorch Geometric 是一个用于处理图数据的 PyTorch 扩展库,提供了丰富的图神经网络模型和工具。DropEdge 可以与 PyTorch Geometric 结合使用,进一步提升图神经网络的性能。
4.2 DGL (Deep Graph Library)
DGL 是另一个流行的图神经网络库,支持多种图神经网络模型和算法。DropEdge 的实现可以迁移到 DGL 中,以支持更广泛的图神经网络应用场景。
4.3 TensorFlow GNN
如果你使用 TensorFlow 进行开发,可以参考 TensorFlow GNN 项目,将 DropEdge 的思路应用到 TensorFlow 的图神经网络模型中。
通过以上模块的介绍,你应该能够快速上手 DropEdge 项目,并将其应用到实际的图神经网络任务中。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00