DropEdge 开源项目使用教程
1. 项目介绍
DropEdge 是一个用于深度图卷积网络(Graph Convolutional Networks, GCNs)的 PyTorch 实现项目。该项目旨在通过一种名为 DropEdge 的新技术来缓解深度 GCNs 中的过拟合(over-fitting)和过平滑(over-smoothing)问题。DropEdge 的核心思想是在每个训练周期中随机移除输入图中的部分边,从而起到数据增强和消息传递减少的作用。该技术可以与多种骨干模型(如 GCN、ResGCN、GraphSAGE 和 JKNet)结合使用,以提升性能。
2. 项目快速启动
2.1 环境准备
首先,确保你已经安装了 Python 3.6.2 或更高版本。然后,安装项目所需的依赖包:
pip install -r requirements.txt
2.2 运行示例
项目提供了一个简单的示例脚本来运行 DropEdge 模型。你可以通过以下命令快速启动:
sh run.sh
2.3 自定义运行
如果你想自定义运行参数,可以参考 scripts 文件夹中的脚本。例如,运行 Cora 数据集上的 IncepGCN 模型:
sh scripts/supervised/cora_IncepGCN.sh
3. 应用案例和最佳实践
3.1 数据集准备
DropEdge 支持多种基准数据集,如 Cora、Citeseer 和 Pubmed。数据格式与 GCN 相同,项目提供了这些数据集的示例(位于 data 文件夹中)。你可以使用这些数据集来验证模型的性能。
3.2 模型选择
DropEdge 可以与多种骨干模型结合使用,包括 GCN、ResGCN、GraphSAGE 和 JKNet。你可以根据具体任务选择合适的模型,并通过 DropEdge 来提升其性能。
3.3 结果分析
项目提供了详细的基准测试结果,展示了不同骨干模型在不同层数下使用 DropEdge 前后的性能对比。你可以参考这些结果来选择最佳的模型配置。
4. 典型生态项目
4.1 PyTorch Geometric
PyTorch Geometric 是一个用于处理图数据的 PyTorch 扩展库,提供了丰富的图神经网络模型和工具。DropEdge 可以与 PyTorch Geometric 结合使用,进一步提升图神经网络的性能。
4.2 DGL (Deep Graph Library)
DGL 是另一个流行的图神经网络库,支持多种图神经网络模型和算法。DropEdge 的实现可以迁移到 DGL 中,以支持更广泛的图神经网络应用场景。
4.3 TensorFlow GNN
如果你使用 TensorFlow 进行开发,可以参考 TensorFlow GNN 项目,将 DropEdge 的思路应用到 TensorFlow 的图神经网络模型中。
通过以上模块的介绍,你应该能够快速上手 DropEdge 项目,并将其应用到实际的图神经网络任务中。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
new-apiAI模型聚合管理中转分发系统,一个应用管理您的所有AI模型,支持将多种大模型转为统一格式调用,支持OpenAI、Claude、Gemini等格式,可供个人或者企业内部管理与分发渠道使用。🍥 A Unified AI Model Management & Distribution System. Aggregate all your LLMs into one app and access them via an OpenAI-compatible API, with native support for Claude (Messages) and Gemini formats.JavaScript01
idea-claude-code-gui一个功能强大的 IntelliJ IDEA 插件,为开发者提供 Claude Code 和 OpenAI Codex 双 AI 工具的可视化操作界面,让 AI 辅助编程变得更加高效和直观。Java01
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00