Apache Arrow项目中的PyArrow内存消耗问题深度分析
2025-05-15 19:48:56作者:宣利权Counsellor
问题背景
在Apache Arrow项目的PyArrow 18.1版本中,用户报告了一个显著的内存消耗异常现象。当读取一个仅600KB大小的Parquet文件时,内存峰值消耗竟达到1GB以上,而生成的PyArrow表实际大小仅为22MB。这一现象在WSL、Linux和macOS三种不同平台上均能复现,且与PyArrow 17版本(内存消耗<200MB)形成鲜明对比。
技术分析
内存消耗异常原因
经过深入调查,发现该问题与内存追踪工具memray的测量方式有关。PyArrow默认使用其内置的高性能内存池(jemalloc或mimalloc),而memray无法正确追踪这些自定义内存池的分配情况。这导致memray报告的内存消耗远高于实际物理内存使用量。
关键发现
- 测量工具局限性:memray在默认配置下无法识别Arrow特有的内存管理机制,会误将内存池预留空间计入总分配量
- 实际内存使用:通过系统监控工具(如ps)显示的实际RSS内存仅为169MB左右
- 解决方案:通过设置环境变量
ARROW_DEFAULT_MEMORY_POOL=system
强制使用系统内存池后,memray报告的内存消耗即与实际情况一致(约178MB)
技术原理详解
Arrow内存池架构
Apache Arrow设计了自己的内存池系统,主要优势包括:
- 减少系统调用次数
- 实现更高效的内存复用
- 支持并行内存分配
- 提供内存对齐保证
测量误差产生机制
当使用memray等工具时:
- 工具通过LD_PRELOAD方式拦截标准内存分配函数(malloc/calloc等)
- Arrow内存池会预先分配大块内存区域
- 后续对象分配从这些预分配区域中切分
- 工具无法感知这种二级分配机制,导致统计失真
最佳实践建议
-
性能测试时:对于使用Arrow的项目,建议结合多种监控方式:
- 系统级监控(如ps、top)
- 工具级监控(设置system内存池后的memray)
- Arrow自带的内存统计接口
-
生产环境配置:
- 保持默认内存池配置以获得最佳性能
- 仅在需要精确测量时临时切换为系统内存池
-
版本升级注意:从PyArrow 17升级到18+时,虽然内存使用模式可能变化,但实际物理内存消耗通常保持合理范围
结论
本次调查揭示了性能测量工具与特定内存管理系统交互时可能产生的认知偏差。对于Apache Arrow这样的高性能数据系统,理解其内存管理机制对准确评估系统行为至关重要。开发者应当根据实际需求选择合适的监控策略,避免被表面数据误导。
该案例也展示了开源社区协作的价值,通过核心维护者与用户的积极互动,快速定位并解释了看似异常的现象,为后续用户提供了宝贵的经验参考。
登录后查看全文
热门项目推荐
相关项目推荐
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0118AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 JavaWeb企业门户网站源码 - 企业级门户系统开发指南 WebVideoDownloader:高效网页视频抓取工具全面使用指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 STM32到GD32项目移植完全指南:从兼容性到实战技巧 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
225
2.27 K

React Native鸿蒙化仓库
JavaScript
211
287

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

暂无简介
Dart
526
116

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
987
583

openGauss kernel ~ openGauss is an open source relational database management system
C++
148
197

GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】
Jinja
45
0

ArkUI-X adaptation to Android | ArkUI-X支持Android平台的适配层
C++
39
55

ArkUI-X adaptation to iOS | ArkUI-X支持iOS平台的适配层
Objective-C++
19
44