Vercel AI SDK 中 Google Vertex AI 对 Gemini 2.5 思考预算的支持
在最新发布的 Gemini 2.5 模型中,Google 引入了一个称为"思考预算"(thinking budget)的新特性。这个特性允许开发者控制模型在生成响应前的内部思考过程所使用的计算资源。本文将深入探讨这一特性在 Vercel AI SDK 中的实现情况,特别是针对 Google Vertex AI 生产环境的使用场景。
思考预算本质上是一个控制参数,开发者可以设置模型在生成最终响应前能够使用的最大计算量。这个参数以 token 数量为单位,设置为 0 时表示完全禁用模型的思考过程。对于需要严格控制响应时间或计算成本的应用程序来说,这是一个非常有价值的功能。
在 Vercel AI SDK 的 Google 提供程序中,已经通过 providerOptions 参数实现了对思考预算的支持。开发者可以通过以下方式使用:
const { text } = await generateText({
model: google('gemini-2.5-flash-preview-04-17'),
providerOptions: {
google: {
thinkingConfig: {
thinkingBudget: 2048, // 设置思考预算为2048个token
},
},
},
});
然而,对于使用 Google Vertex AI 生产环境的开发者来说,这一功能最初并未在 @ai-sdk/google-vertex 包中实现。考虑到 Vertex AI 是企业级生产环境的首选部署平台,这一缺失成为了一个明显的功能缺口。
经过社区反馈和开发团队的快速响应,Vercel AI SDK 已经通过 PR #6261 在 @ai-sdk/google-vertex 包中实现了对思考预算的完整支持。现在,使用 Vertex AI 的开发者也可以享受同样的功能控制能力。
在实际应用中,合理设置思考预算可以带来多方面的好处:
-
成本控制:通过限制模型的内部思考过程,可以减少计算资源的使用,从而降低 API 调用成本。
-
响应速度:减少思考预算通常能加快模型的响应速度,对于实时性要求高的应用场景特别有用。
-
可预测性:固定的思考预算使得模型行为更加一致,便于性能测试和系统优化。
需要注意的是,思考预算的设置需要根据具体应用场景进行调整。过低的预算可能导致模型输出质量下降,而过高的预算则可能造成资源浪费。建议开发者通过实验找到适合自己应用的最佳平衡点。
随着 Vercel AI SDK 对这一功能的全面支持,使用 Gemini 2.5 模型的开发者现在可以在开发环境和生产环境中获得一致的功能体验,这对于确保从开发到生产的平滑过渡至关重要。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00