Vercel AI SDK 中 Google Vertex AI 对 Gemini 2.5 思考预算的支持
在最新发布的 Gemini 2.5 模型中,Google 引入了一个称为"思考预算"(thinking budget)的新特性。这个特性允许开发者控制模型在生成响应前的内部思考过程所使用的计算资源。本文将深入探讨这一特性在 Vercel AI SDK 中的实现情况,特别是针对 Google Vertex AI 生产环境的使用场景。
思考预算本质上是一个控制参数,开发者可以设置模型在生成最终响应前能够使用的最大计算量。这个参数以 token 数量为单位,设置为 0 时表示完全禁用模型的思考过程。对于需要严格控制响应时间或计算成本的应用程序来说,这是一个非常有价值的功能。
在 Vercel AI SDK 的 Google 提供程序中,已经通过 providerOptions 参数实现了对思考预算的支持。开发者可以通过以下方式使用:
const { text } = await generateText({
model: google('gemini-2.5-flash-preview-04-17'),
providerOptions: {
google: {
thinkingConfig: {
thinkingBudget: 2048, // 设置思考预算为2048个token
},
},
},
});
然而,对于使用 Google Vertex AI 生产环境的开发者来说,这一功能最初并未在 @ai-sdk/google-vertex 包中实现。考虑到 Vertex AI 是企业级生产环境的首选部署平台,这一缺失成为了一个明显的功能缺口。
经过社区反馈和开发团队的快速响应,Vercel AI SDK 已经通过 PR #6261 在 @ai-sdk/google-vertex 包中实现了对思考预算的完整支持。现在,使用 Vertex AI 的开发者也可以享受同样的功能控制能力。
在实际应用中,合理设置思考预算可以带来多方面的好处:
-
成本控制:通过限制模型的内部思考过程,可以减少计算资源的使用,从而降低 API 调用成本。
-
响应速度:减少思考预算通常能加快模型的响应速度,对于实时性要求高的应用场景特别有用。
-
可预测性:固定的思考预算使得模型行为更加一致,便于性能测试和系统优化。
需要注意的是,思考预算的设置需要根据具体应用场景进行调整。过低的预算可能导致模型输出质量下降,而过高的预算则可能造成资源浪费。建议开发者通过实验找到适合自己应用的最佳平衡点。
随着 Vercel AI SDK 对这一功能的全面支持,使用 Gemini 2.5 模型的开发者现在可以在开发环境和生产环境中获得一致的功能体验,这对于确保从开发到生产的平滑过渡至关重要。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
Kimi-K2-ThinkingKimi-K2-Thinking是最新开源思维模型,作为能动态调用工具的推理代理,通过深度多步推理和稳定工具调用(200-300次连续调用),在HLE、BrowseComp等基准测试中刷新纪录。原生INT4量化模型,256k上下文窗口,实现推理延迟和GPU内存使用的无损降低,支持自主研究、编码和写作等工作流。【此简介由AI生成】Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00