首页
/ AWS Deep Learning Containers发布PyTorch ARM64架构推理容器v1.12版本

AWS Deep Learning Containers发布PyTorch ARM64架构推理容器v1.12版本

2025-07-06 21:08:57作者:齐冠琰

AWS Deep Learning Containers(DLC)是亚马逊云科技提供的一套预配置的深度学习容器镜像,这些镜像经过优化可以直接在AWS云平台上运行,大大简化了深度学习环境的部署流程。这些容器镜像包含了流行的深度学习框架如PyTorch、TensorFlow等,以及必要的依赖库和工具,用户无需从零开始配置环境,可以快速启动深度学习任务。

近日,AWS Deep Learning Containers项目发布了针对ARM64架构的PyTorch推理容器v1.12版本,主要支持PyTorch 2.6.0框架。这一更新为使用ARM架构处理器的用户提供了更高效的深度学习推理解决方案。

版本核心特性

本次发布的v1.12版本提供了两种类型的容器镜像:

  1. CPU版本:基于Ubuntu 22.04系统,预装了PyTorch 2.6.0 CPU版本,支持Python 3.12环境。该镜像适用于不需要GPU加速的推理场景,可以在普通的ARM64架构服务器上运行。

  2. GPU版本:同样基于Ubuntu 22.04系统,预装了PyTorch 2.6.0 CUDA 12.4版本,支持Python 3.12环境。这个版本针对配备NVIDIA GPU的ARM64架构服务器进行了优化,能够充分利用GPU的并行计算能力加速深度学习推理任务。

关键软件包版本

两个版本的容器镜像都预装了深度学习开发所需的常用工具和库:

  • 深度学习框架:PyTorch 2.6.0(CPU/GPU版本)、TorchVision 0.21.0、TorchAudio 2.6.0
  • 模型服务工具:TorchServe 0.12.0、Torch-Model-Archiver 0.12.0
  • 数据处理库:NumPy 2.2.3、Pandas 2.2.3(仅GPU版本)、OpenCV 4.11.0.86
  • 开发工具:Cython 3.0.12、Ninja 1.11.1.1
  • AWS工具:AWS CLI 1.38.8、Boto3 1.37.8

技术优势

  1. ARM64架构优化:这些容器专门为ARM64架构处理器(如AWS Graviton系列)优化,能够充分发挥ARM处理器的性能优势,在特定工作负载下可能比x86架构更具性价比。

  2. 开箱即用:预装了从深度学习框架到模型服务的完整工具链,用户无需花费时间配置环境,可以直接部署模型进行推理。

  3. 版本兼容性:支持最新的Python 3.12和PyTorch 2.6.0,确保用户能够使用最新的特性和性能优化。

  4. CUDA 12.4支持:GPU版本基于最新的CUDA 12.4工具包,提供了对最新NVIDIA GPU的更好支持。

适用场景

这些容器镜像特别适合以下应用场景:

  • 在AWS Graviton处理器上部署PyTorch模型推理服务
  • 构建ARM架构的机器学习推理流水线
  • 开发和测试跨架构的深度学习应用
  • 需要快速原型设计和部署的机器学习项目

总结

AWS Deep Learning Containers的这次更新为ARM64架构用户提供了更完善的PyTorch推理解决方案。通过预配置的优化环境,开发者可以专注于模型开发和业务逻辑,而不必担心底层环境的兼容性和性能问题。特别是对于已经在使用或计划迁移到ARM架构的用户,这些容器镜像将大大简化部署流程,提高开发效率。

登录后查看全文
热门项目推荐

项目优选

收起
kernelkernel
deepin linux kernel
C
22
6
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
203
2.18 K
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
208
285
pytorchpytorch
Ascend Extension for PyTorch
Python
62
94
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
977
575
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
ops-mathops-math
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
84
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399
communitycommunity
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27
MateChatMateChat
前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。 官网地址:https://matechat.gitcode.com
1.2 K
133