AWS Deep Learning Containers发布PyTorch ARM64架构推理容器v1.12版本
AWS Deep Learning Containers(DLC)是亚马逊云科技提供的一套预配置的深度学习容器镜像,这些镜像经过优化可以直接在AWS云平台上运行,大大简化了深度学习环境的部署流程。这些容器镜像包含了流行的深度学习框架如PyTorch、TensorFlow等,以及必要的依赖库和工具,用户无需从零开始配置环境,可以快速启动深度学习任务。
近日,AWS Deep Learning Containers项目发布了针对ARM64架构的PyTorch推理容器v1.12版本,主要支持PyTorch 2.6.0框架。这一更新为使用ARM架构处理器的用户提供了更高效的深度学习推理解决方案。
版本核心特性
本次发布的v1.12版本提供了两种类型的容器镜像:
-
CPU版本:基于Ubuntu 22.04系统,预装了PyTorch 2.6.0 CPU版本,支持Python 3.12环境。该镜像适用于不需要GPU加速的推理场景,可以在普通的ARM64架构服务器上运行。
-
GPU版本:同样基于Ubuntu 22.04系统,预装了PyTorch 2.6.0 CUDA 12.4版本,支持Python 3.12环境。这个版本针对配备NVIDIA GPU的ARM64架构服务器进行了优化,能够充分利用GPU的并行计算能力加速深度学习推理任务。
关键软件包版本
两个版本的容器镜像都预装了深度学习开发所需的常用工具和库:
- 深度学习框架:PyTorch 2.6.0(CPU/GPU版本)、TorchVision 0.21.0、TorchAudio 2.6.0
- 模型服务工具:TorchServe 0.12.0、Torch-Model-Archiver 0.12.0
- 数据处理库:NumPy 2.2.3、Pandas 2.2.3(仅GPU版本)、OpenCV 4.11.0.86
- 开发工具:Cython 3.0.12、Ninja 1.11.1.1
- AWS工具:AWS CLI 1.38.8、Boto3 1.37.8
技术优势
-
ARM64架构优化:这些容器专门为ARM64架构处理器(如AWS Graviton系列)优化,能够充分发挥ARM处理器的性能优势,在特定工作负载下可能比x86架构更具性价比。
-
开箱即用:预装了从深度学习框架到模型服务的完整工具链,用户无需花费时间配置环境,可以直接部署模型进行推理。
-
版本兼容性:支持最新的Python 3.12和PyTorch 2.6.0,确保用户能够使用最新的特性和性能优化。
-
CUDA 12.4支持:GPU版本基于最新的CUDA 12.4工具包,提供了对最新NVIDIA GPU的更好支持。
适用场景
这些容器镜像特别适合以下应用场景:
- 在AWS Graviton处理器上部署PyTorch模型推理服务
- 构建ARM架构的机器学习推理流水线
- 开发和测试跨架构的深度学习应用
- 需要快速原型设计和部署的机器学习项目
总结
AWS Deep Learning Containers的这次更新为ARM64架构用户提供了更完善的PyTorch推理解决方案。通过预配置的优化环境,开发者可以专注于模型开发和业务逻辑,而不必担心底层环境的兼容性和性能问题。特别是对于已经在使用或计划迁移到ARM架构的用户,这些容器镜像将大大简化部署流程,提高开发效率。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









