Great Expectations 数据验证中获取完整异常行索引的解决方案
背景介绍
Great Expectations 是一个强大的数据质量验证工具,它可以帮助数据工程师和分析师确保数据的准确性和一致性。在实际应用中,我们经常需要获取数据验证过程中所有不符合预期的行记录,以便进行后续处理或修复。然而,许多用户在使用过程中发现,默认情况下 Great Expectations 只会返回最多20条异常记录,这给需要处理全部异常数据的场景带来了挑战。
问题分析
在使用 Great Expectations 进行数据验证时,特别是通过 Pandas DataFrame 作为数据源时,系统默认只返回部分异常结果(通常限制为20条)。这种设计主要是出于性能和数据文档展示的考虑,但对于需要处理所有异常数据的场景来说,这种限制就显得不够用了。
解决方案
使用完整结果格式
Great Expectations 提供了多种结果格式选项,其中"COMPLETE"模式可以返回完整的验证结果。要实现这一点,需要在验证配置中明确指定结果格式参数:
result_format = {
"result_format": "COMPLETE",
"include_unexpected_rows": True,
"unexpected_index_column_names": ["SRC_RECORD_ID"],
"return_unexpected_index_query": True
}
验证定义的正确使用
通过创建验证定义(ValidationDefinition)来执行验证,可以确保结果格式参数被正确应用:
validation_definition = gx.ValidationDefinition(
data=batch_definition,
suite=suite,
name="validation_definition"
)
complete_result_format_dict = {"result_format": "COMPLETE"}
validation_results = validation_definition.run(
batch_parameters=batch_parameters,
result_format=complete_result_format_dict
)
异常索引列的指定
为了获取异常行的完整索引,需要明确指定哪些列作为索引列:
"unexpected_index_column_names": ["SRC_RECORD_ID"]
实际应用建议
-
环境选择:对于生产环境,建议使用文件模式(file mode)而非临时模式(ephemeral mode),以便持久化保存期望套件(expectation suite)。
-
异常处理:在重复运行验证时,应添加适当的异常处理逻辑,避免因重复创建数据源而报错。
-
期望套件管理:将期望规则保存为独立的JSON文件,便于在不同环境间共享和版本控制。
-
结果处理:验证结果按期望规则组织,如需按列组织结果,需要自行编写后处理逻辑。
性能考量
虽然获取完整异常结果提供了更全面的数据质量视图,但也需要注意:
- 大数据集下获取完整结果可能影响性能
- 内存消耗会随异常记录数量增加而增长
- 建议在生产环境中根据实际需求平衡完整性和性能
总结
通过合理配置 Great Expectations 的结果格式参数和使用验证定义,开发者可以突破默认的20条异常记录限制,获取完整的验证结果。这为数据质量监控和异常数据处理提供了更大的灵活性。在实际应用中,应根据具体场景选择最适合的配置方式,并注意性能和资源消耗的平衡。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C031
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00