Great Expectations 数据验证中获取完整异常行索引的解决方案
背景介绍
Great Expectations 是一个强大的数据质量验证工具,它可以帮助数据工程师和分析师确保数据的准确性和一致性。在实际应用中,我们经常需要获取数据验证过程中所有不符合预期的行记录,以便进行后续处理或修复。然而,许多用户在使用过程中发现,默认情况下 Great Expectations 只会返回最多20条异常记录,这给需要处理全部异常数据的场景带来了挑战。
问题分析
在使用 Great Expectations 进行数据验证时,特别是通过 Pandas DataFrame 作为数据源时,系统默认只返回部分异常结果(通常限制为20条)。这种设计主要是出于性能和数据文档展示的考虑,但对于需要处理所有异常数据的场景来说,这种限制就显得不够用了。
解决方案
使用完整结果格式
Great Expectations 提供了多种结果格式选项,其中"COMPLETE"模式可以返回完整的验证结果。要实现这一点,需要在验证配置中明确指定结果格式参数:
result_format = {
"result_format": "COMPLETE",
"include_unexpected_rows": True,
"unexpected_index_column_names": ["SRC_RECORD_ID"],
"return_unexpected_index_query": True
}
验证定义的正确使用
通过创建验证定义(ValidationDefinition)来执行验证,可以确保结果格式参数被正确应用:
validation_definition = gx.ValidationDefinition(
data=batch_definition,
suite=suite,
name="validation_definition"
)
complete_result_format_dict = {"result_format": "COMPLETE"}
validation_results = validation_definition.run(
batch_parameters=batch_parameters,
result_format=complete_result_format_dict
)
异常索引列的指定
为了获取异常行的完整索引,需要明确指定哪些列作为索引列:
"unexpected_index_column_names": ["SRC_RECORD_ID"]
实际应用建议
-
环境选择:对于生产环境,建议使用文件模式(file mode)而非临时模式(ephemeral mode),以便持久化保存期望套件(expectation suite)。
-
异常处理:在重复运行验证时,应添加适当的异常处理逻辑,避免因重复创建数据源而报错。
-
期望套件管理:将期望规则保存为独立的JSON文件,便于在不同环境间共享和版本控制。
-
结果处理:验证结果按期望规则组织,如需按列组织结果,需要自行编写后处理逻辑。
性能考量
虽然获取完整异常结果提供了更全面的数据质量视图,但也需要注意:
- 大数据集下获取完整结果可能影响性能
- 内存消耗会随异常记录数量增加而增长
- 建议在生产环境中根据实际需求平衡完整性和性能
总结
通过合理配置 Great Expectations 的结果格式参数和使用验证定义,开发者可以突破默认的20条异常记录限制,获取完整的验证结果。这为数据质量监控和异常数据处理提供了更大的灵活性。在实际应用中,应根据具体场景选择最适合的配置方式,并注意性能和资源消耗的平衡。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00