SDV项目多表医疗数据合成中的NaN值问题分析与解决
2025-06-30 05:03:09作者:昌雅子Ethen
问题背景
在使用SDV(Synthetic Data Vault)的HMASynthesizer进行多表医疗数据合成时,用户遇到了一个棘手的问题:在原始数据中不存在缺失值的情况下,合成数据中却出现了NaN(Not a Number)和NaT(Not a Time)值。这一问题主要出现在两个子表中:
- 医疗表(med):在日期字段(FromDate, ToDate, PaidDate)出现NaT
- 药品表(pharm):在日期字段(FillDate)和数值字段(MR_Allowed, MR_Paid, Days_Supplied, Qty_Dispensed)出现NaN/NaT
数据模型分析
该医疗数据集包含三个关联表,通过Member_ID字段建立关系:
- 会员表(mem):包含会员基本信息,如ID、出生日期、性别和暴露月数
- 医疗表(med):包含医疗诊断信息,如诊断代码、就诊日期和费用
- 药品表(pharm):包含药品处方信息,如药品代码、配药日期和数量
问题排查过程
初步分析
开发团队首先确认了以下几点:
- 合成器确实在重建原始数据中存在的NDC和IDC代码,没有生成无效代码
- 对于特定会员,药品与诊断之间的关联关系不够真实
- 原始数据确实不存在缺失值,但合成数据却产生了NaN/NaT
环境验证
团队建议用户检查Python环境,确认SDV版本是否为1.10.0,并验证其他依赖库(pandas, numpy等)的版本兼容性。同时建议使用load_csvs函数规范加载数据,避免数据读取过程中引入问题。
参数设置影响
发现用户代码中设置了default_distribution为'truncnorm',这可能是问题的诱因之一。在SDV 1.10.0版本中,默认参数已经优化,不再需要特别指定分布类型。
解决方案
经过多次测试和验证,最终确定以下解决方案:
- 升级到SDV 1.10.0:确保使用最新版本,其中已修复相关NaN值生成的bug
- 简化参数设置:移除不必要的
set_table_parameters调用,特别是避免手动设置分布类型 - 数据类型检查:确保数值字段在Python中为float类型,而非int类型
- 诊断报告验证:使用
run_diagnostic生成评估报告,确认数据质量
技术原理
该问题的根本原因在于SDV在处理数值和日期字段时的边界条件控制。当使用截断正态分布('truncnorm')时,在某些边缘情况下可能生成超出有效范围的值,导致转换失败而产生NaN。新版本通过以下改进解决了这一问题:
- 更严格的边界值控制
- 优化的数值转换流程
- 增强的异常处理机制
最佳实践建议
基于这一案例,我们总结出以下使用SDV进行多表数据合成的最佳实践:
- 版本管理:始终使用最新稳定版的SDV
- 参数简化:除非有特殊需求,否则使用默认参数
- 数据预处理:确保输入数据格式规范,特别是日期和数值类型
- 质量评估:生成后务必运行诊断报告验证数据质量
- 逐步测试:先在小规模数据上验证,再扩展到全量数据
通过遵循这些实践,可以显著提高医疗等多表数据合成的质量和可靠性,避免类似NaN值问题的出现。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
184
196
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
275
97
暂无简介
Dart
623
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.43 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
621
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1