Apollo Kotlin 中标准化缓存的初始化与分页构造实践
在 Apollo Kotlin 的最新快照版本 v4.0.0 中,标准化缓存的初始化方式发生了一些变化。开发者发现无法同时使用 CacheKeyResolver
和 Relay 风格的分页构造(如 MetadataGenerator
、RecordMerger
等)来初始化缓存。本文将深入探讨这一变化背后的技术细节,并提供解决方案。
背景与问题
在 Apollo Kotlin 的早期版本中,开发者可以通过 CacheKeyResolver
结合其他分页相关组件来初始化标准化缓存。然而,在 v4.0.0 快照版本中,这种初始化方式不再直接支持。这给依赖这些功能的开发者带来了迁移上的挑战。
技术解析
从 CacheKeyResolver 到 ApolloResolver
Apollo Kotlin 团队正在将 CacheResolver
过渡到新的 ApolloResolver
接口。这一变化旨在为库的未来演进提供更好的灵活性,同时保持非破坏性的更新方式。ApolloStore
的构造函数现在期望接收一个 ApolloResolver
实例,而不是旧的 CacheResolver
。
临时解决方案
虽然目前还没有 ApolloResolver
版本的 CacheKeyResolver
,但开发者可以通过适配器模式将现有的 CacheKeyResolver
转换为 ApolloResolver
:
class ApolloCacheKeyAdapter(private val cacheKeyResolver: CacheKeyResolver) : ApolloResolver {
override fun resolveField(context: ResolverContext): Any? {
return cacheKeyResolver.resolveField(
variables = context.variables,
parent = context.parent,
parentId = context.parentKey,
field = context.field
)
}
}
开发者可以将 ApolloCacheKeyAdapter(yourExistingCacheKeyResolver)
传递给 ApolloStore()
构造函数,从而继续使用现有的缓存键解析逻辑。
未来发展方向
Apollo Kotlin 团队已经意识到这一需求,并在最新的开发中增加了对 ApolloResolver
版本 CacheKeyResolver
的支持。这一改进将使得开发者能够更无缝地迁移到新版本,同时继续使用他们熟悉的分页构造和缓存初始化方式。
最佳实践建议
对于正在迁移到 Apollo Kotlin v4.0.0 的开发者,我们建议:
- 评估现有的
CacheKeyResolver
实现,了解其功能需求 - 考虑使用上述适配器方案作为临时迁移方案
- 关注官方文档,了解
ApolloResolver
的最新实现进展 - 在测试环境中充分验证缓存行为,确保分页功能正常工作
通过理解这些技术变化和采用适当的迁移策略,开发者可以确保他们的应用在升级到 Apollo Kotlin 新版本时保持稳定性和性能。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









