Apollo Kotlin 中标准化缓存的初始化与分页构造实践
在 Apollo Kotlin 的最新快照版本 v4.0.0 中,标准化缓存的初始化方式发生了一些变化。开发者发现无法同时使用 CacheKeyResolver 和 Relay 风格的分页构造(如 MetadataGenerator、RecordMerger 等)来初始化缓存。本文将深入探讨这一变化背后的技术细节,并提供解决方案。
背景与问题
在 Apollo Kotlin 的早期版本中,开发者可以通过 CacheKeyResolver 结合其他分页相关组件来初始化标准化缓存。然而,在 v4.0.0 快照版本中,这种初始化方式不再直接支持。这给依赖这些功能的开发者带来了迁移上的挑战。
技术解析
从 CacheKeyResolver 到 ApolloResolver
Apollo Kotlin 团队正在将 CacheResolver 过渡到新的 ApolloResolver 接口。这一变化旨在为库的未来演进提供更好的灵活性,同时保持非破坏性的更新方式。ApolloStore 的构造函数现在期望接收一个 ApolloResolver 实例,而不是旧的 CacheResolver。
临时解决方案
虽然目前还没有 ApolloResolver 版本的 CacheKeyResolver,但开发者可以通过适配器模式将现有的 CacheKeyResolver 转换为 ApolloResolver:
class ApolloCacheKeyAdapter(private val cacheKeyResolver: CacheKeyResolver) : ApolloResolver {
override fun resolveField(context: ResolverContext): Any? {
return cacheKeyResolver.resolveField(
variables = context.variables,
parent = context.parent,
parentId = context.parentKey,
field = context.field
)
}
}
开发者可以将 ApolloCacheKeyAdapter(yourExistingCacheKeyResolver) 传递给 ApolloStore() 构造函数,从而继续使用现有的缓存键解析逻辑。
未来发展方向
Apollo Kotlin 团队已经意识到这一需求,并在最新的开发中增加了对 ApolloResolver 版本 CacheKeyResolver 的支持。这一改进将使得开发者能够更无缝地迁移到新版本,同时继续使用他们熟悉的分页构造和缓存初始化方式。
最佳实践建议
对于正在迁移到 Apollo Kotlin v4.0.0 的开发者,我们建议:
- 评估现有的
CacheKeyResolver实现,了解其功能需求 - 考虑使用上述适配器方案作为临时迁移方案
- 关注官方文档,了解
ApolloResolver的最新实现进展 - 在测试环境中充分验证缓存行为,确保分页功能正常工作
通过理解这些技术变化和采用适当的迁移策略,开发者可以确保他们的应用在升级到 Apollo Kotlin 新版本时保持稳定性和性能。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C080
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00