AWS Deep Learning Containers发布PyTorch推理容器v1.21版本
AWS Deep Learning Containers(DLC)是亚马逊云科技提供的一套预配置的深度学习容器镜像,它集成了主流深度学习框架和必要的依赖库,帮助开发者快速部署深度学习应用。这些容器经过AWS优化,可直接在EC2等云服务上运行,大幅简化了深度学习环境的搭建过程。
近日,AWS DLC项目发布了PyTorch推理容器的新版本v1.21,主要针对PyTorch 2.3.0框架进行了更新。这个版本提供了CPU和GPU两种计算架构的支持,为不同硬件环境下的模型推理提供了灵活选择。
版本核心特性
本次发布的容器镜像基于Ubuntu 20.04操作系统构建,主要包含以下两个变体:
-
CPU版本:适用于没有GPU加速需求的推理场景,镜像中包含了PyTorch 2.3.0的CPU版本及其相关依赖。
-
GPU版本:针对CUDA 12.1环境优化,包含了PyTorch 2.3.0的CUDA 12.1版本,能够充分利用NVIDIA GPU的并行计算能力加速模型推理。
关键软件栈更新
两个版本的容器都预装了丰富的Python包和系统依赖:
-
PyTorch生态:包含torch 2.3.0、torchvision 0.18.0、torchaudio 2.3.0等核心库,以及torchserve 0.11.0和torch-model-archiver 0.11.0等模型服务工具。
-
科学计算栈:预装了numpy 1.26.4、scipy 1.13.1等科学计算库,以及pandas 2.2.2(仅GPU版本)等数据处理工具。
-
图像处理:包含opencv-python 4.10.0.82和pillow 10.3.0,为计算机视觉应用提供支持。
-
AWS工具链:集成了boto3 1.34.122、awscli 1.33.4等AWS SDK,方便与云服务交互。
-
构建工具:包含ninja 1.11.1.1、Cython 3.0.10等编译工具,支持自定义扩展的构建。
系统级优化
在系统层面,容器镜像进行了以下优化:
-
编译器支持:包含了libgcc-9-dev和libstdc++-9-dev等开发库,确保良好的兼容性。
-
开发工具:预装了emacs等编辑器,方便开发者在容器内直接修改代码。
-
CUDA支持:GPU版本完整集成了CUDA 12.1工具链和cuDNN库,为深度学习计算提供底层加速。
应用场景
这个版本的PyTorch推理容器特别适合以下场景:
-
云端模型部署:可以快速在EC2实例上部署训练好的PyTorch模型,提供推理服务。
-
批量预测:利用容器化的环境,可以轻松实现大规模数据的批量预测。
-
模型服务化:通过内置的torchserve工具,可以快速将模型封装为RESTful API服务。
-
开发测试:为开发者提供了一个标准化的PyTorch环境,减少环境配置时间。
版本兼容性
需要注意的是,这个版本基于Python 3.11构建,用户在选择时需要确保与自己的应用兼容。同时,GPU版本需要搭配支持CUDA 12.1的NVIDIA驱动使用。
AWS Deep Learning Containers的这种定期更新机制,确保了开发者始终能够使用到最新优化的深度学习框架版本,同时避免了自行配置环境的复杂性,是云端深度学习应用部署的高效解决方案。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00