首页
/ DataChain项目中NumPy数组适配SQLite存储的优化方案

DataChain项目中NumPy数组适配SQLite存储的优化方案

2025-06-30 22:07:44作者:钟日瑜

在DataChain项目的开发过程中,我们遇到了一个关于NumPy数组存储的技术挑战。当项目尝试将NumPy数组数据存入SQLite数据库时,由于SQLite原生不支持数组类型,需要进行特殊的数据转换处理。

问题背景

DataChain项目在从Studio获取数据时,某些情况下会遇到数据类型为"object"的NumPy数组(特别是双精度数组)。最初我们使用orjson库进行数组到字符串的转换,但发现orjson对"object"类型的数组支持不足,会抛出"TypeError: unsupported datatype in numpy array"异常。

技术分析

NumPy数组在Python数据科学领域广泛应用,但SQLite作为轻量级数据库,其数据类型系统相对简单。我们需要在两者之间建立桥梁:

  1. orjson的限制:虽然orjson在性能上优于标准json库,但它对NumPy数组类型的支持有限,特别是对"object"类型的数组处理能力不足。

  2. 数据类型敏感性:NumPy的"object"类型通常用于存储Python原生对象或混合类型数据,这种灵活性带来了序列化时的复杂性。

解决方案

我们采用了混合策略来解决这个问题:

  1. 类型检测机制:在数据转换前,首先检查NumPy数组的数据类型。如果是"object"类型,则回退到标准json库进行处理。

  2. 性能优化:对于非"object"类型的数组,继续使用orjson以获得更好的序列化性能。

  3. 兼容性保障:标准json库虽然性能稍逊,但对各种NumPy数组类型都有良好的支持,确保了系统的稳定性。

实现细节

在具体实现上,我们创建了一个智能适配器:

def adapt_numpy_array(arr):
    if arr.dtype == 'object':
        return json.dumps(arr.tolist())
    else:
        return orjson.dumps(arr)

这种实现方式既保留了高性能场景下的优势,又确保了特殊情况的兼容性。

经验总结

这个案例给我们带来几个重要的技术启示:

  1. 性能与兼容性的平衡:在追求性能优化的同时,必须考虑边缘情况的处理。

  2. 类型系统的重要性:在处理科学计算数据时,对数据类型的敏感度直接影响系统的健壮性。

  3. 渐进式优化:技术方案应该允许灵活调整,而不是一刀切的实现。

这个改进不仅解决了当前的问题,也为DataChain项目处理复杂数据类型提供了更健壮的框架,为后续的功能扩展打下了良好基础。

登录后查看全文
热门项目推荐

项目优选

收起
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
144
1.94 K
kernelkernel
deepin linux kernel
C
22
6
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
192
274
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
930
554
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
887
394
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
75
66
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.11 K
0
openHiTLS-examplesopenHiTLS-examples
本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
64
512