开源项目启动与配置教程
2025-05-14 09:24:24作者:冯梦姬Eddie
1. 项目的目录结构及介绍
本项目 deep-learning-lectures 的目录结构如下:
deep-learning-lectures/
├── data/ # 存储项目所需的数据集
├── notebooks/ # Jupyter 笔记本文件,包含所有的课程内容和示例代码
├── slides/ # 幻灯片,用于课程讲解
├── tensorboards/ # 存储TensorBoard的日志文件
├── images/ # 存储项目中的图片文件
├── src/ # 源代码目录,包含模型定义、训练和评估代码
│ ├── datasets/ # 数据处理相关代码
│ ├── models/ # 模型定义和训练代码
│ ├── utils/ # 工具类函数和辅助代码
│ └── main.py # 主程序入口文件
├── requirements.txt # 项目依赖的Python库列表
├── setup.sh # 环境配置脚本
└── README.md # 项目说明文件
data/:存储项目所需的数据集,可能包括训练数据、验证数据和测试数据。notebooks/:包含所有课程的Jupyter笔记本文件,这些文件中包含了课程的讲解内容和代码示例。slides/:存储用于课程讲解的幻灯片文件。tensorboards/:用于存储TensorBoard的日志文件,方便可视化模型训练过程。images/:存储项目文档和笔记中使用的图片文件。src/:存放源代码,包括数据集处理、模型定义、训练和评估等代码。datasets/:包含数据处理的代码。models/:包含模型的定义和训练代码。utils/:包含工具类函数和辅助代码。main.py:项目的主程序入口,用于启动模型的训练和评估。
requirements.txt:列出项目依赖的Python库,使用pip安装时需要。setup.sh:环境配置脚本,用于设置项目的运行环境。README.md:项目说明文件,提供项目的基本信息和说明。
2. 项目的启动文件介绍
项目的启动文件是位于 src/ 目录下的 main.py。该文件的主要作用是作为程序的主入口,负责初始化模型、加载数据、设置训练参数以及启动训练和评估流程。
# main.py 的简化示例内容
import sys
from models import build_model
from datasets import load_data
from train import train_model
def main():
# 加载数据集
train_data, val_data = load_data()
# 构建模型
model = build_model()
# 训练模型
train_model(model, train_data, val_data)
if __name__ == "__main__":
main()
3. 项目的配置文件介绍
项目的配置文件是 requirements.txt,该文件中列出了项目运行所需的所有Python库及其版本。使用以下命令安装这些依赖:
pip install -r requirements.txt
此外,如果项目需要特定的环境设置或参数配置,可能会在 setup.sh 脚本中定义。运行以下命令可以配置环境:
bash setup.sh
请确保在运行项目之前已经正确安装了所有依赖,并且环境配置正确。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
182
196
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
274
94
暂无简介
Dart
623
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.41 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
621
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1