开源项目启动与配置教程
2025-05-14 13:25:36作者:冯梦姬Eddie
1. 项目的目录结构及介绍
本项目 deep-learning-lectures
的目录结构如下:
deep-learning-lectures/
├── data/ # 存储项目所需的数据集
├── notebooks/ # Jupyter 笔记本文件,包含所有的课程内容和示例代码
├── slides/ # 幻灯片,用于课程讲解
├── tensorboards/ # 存储TensorBoard的日志文件
├── images/ # 存储项目中的图片文件
├── src/ # 源代码目录,包含模型定义、训练和评估代码
│ ├── datasets/ # 数据处理相关代码
│ ├── models/ # 模型定义和训练代码
│ ├── utils/ # 工具类函数和辅助代码
│ └── main.py # 主程序入口文件
├── requirements.txt # 项目依赖的Python库列表
├── setup.sh # 环境配置脚本
└── README.md # 项目说明文件
data/
:存储项目所需的数据集,可能包括训练数据、验证数据和测试数据。notebooks/
:包含所有课程的Jupyter笔记本文件,这些文件中包含了课程的讲解内容和代码示例。slides/
:存储用于课程讲解的幻灯片文件。tensorboards/
:用于存储TensorBoard的日志文件,方便可视化模型训练过程。images/
:存储项目文档和笔记中使用的图片文件。src/
:存放源代码,包括数据集处理、模型定义、训练和评估等代码。datasets/
:包含数据处理的代码。models/
:包含模型的定义和训练代码。utils/
:包含工具类函数和辅助代码。main.py
:项目的主程序入口,用于启动模型的训练和评估。
requirements.txt
:列出项目依赖的Python库,使用pip安装时需要。setup.sh
:环境配置脚本,用于设置项目的运行环境。README.md
:项目说明文件,提供项目的基本信息和说明。
2. 项目的启动文件介绍
项目的启动文件是位于 src/
目录下的 main.py
。该文件的主要作用是作为程序的主入口,负责初始化模型、加载数据、设置训练参数以及启动训练和评估流程。
# main.py 的简化示例内容
import sys
from models import build_model
from datasets import load_data
from train import train_model
def main():
# 加载数据集
train_data, val_data = load_data()
# 构建模型
model = build_model()
# 训练模型
train_model(model, train_data, val_data)
if __name__ == "__main__":
main()
3. 项目的配置文件介绍
项目的配置文件是 requirements.txt
,该文件中列出了项目运行所需的所有Python库及其版本。使用以下命令安装这些依赖:
pip install -r requirements.txt
此外,如果项目需要特定的环境设置或参数配置,可能会在 setup.sh
脚本中定义。运行以下命令可以配置环境:
bash setup.sh
请确保在运行项目之前已经正确安装了所有依赖,并且环境配置正确。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++043Hunyuan3D-Part
腾讯混元3D-Part00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0286Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
162
2.05 K

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
96
15

React Native鸿蒙化仓库
C++
198
279

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
60
16

Git4Research旨在构建一个开放、包容、协作的研究社区,让更多人能够参与到科学研究中,共同推动知识的进步。
HTML
22
1

基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
0

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
950
557

基于QEMU构建的RISC-V64 SOC,支持Linux,baremetal, RTOS等,适合用来学习Linux,后续还会添加大量的controller,实现无需实体开发板,即可学习Linux和RISC-V架构
C
19
5