PyKAN项目中的卷积KAN层实现探索
2025-05-14 21:56:12作者:秋泉律Samson
卷积神经网络(CNN)作为深度学习的重要架构,其核心组件是卷积层。本文将探讨在PyKAN项目中如何实现基于Kolmogorov-Arnold网络(KAN)的卷积层(ConvKAN),以及相关技术实现细节。
卷积KAN的基本原理
传统卷积层使用线性变换加非线性激活的方式处理局部感受野。而卷积KAN的创新之处在于,它使用KAN网络替代了传统的卷积核函数。KAN网络基于Kolmogorov-Arnold表示定理,能够用单变量函数和加法运算逼近多变量连续函数。
从技术实现角度看,卷积操作本质上可以表示为矩阵乘法。通过使用PyTorch的unfold操作,我们可以将输入图像转换为适合矩阵乘法的形式,然后应用KAN网络进行处理。这种方法保持了卷积操作的局部特性,同时引入了KAN的表达能力。
实现细节对比
在PyKAN社区中,出现了多个卷积KAN的实现方案。这些实现虽然在核心思路上相似,但在具体实现上存在差异:
- 基础功能:部分实现支持分组卷积(grouped convolution)和多种padding模式,这些特性使其能够完全替代标准Conv2d层
- 性能优化:有实现基于efficient-kan进行优化,提高了计算效率
- 激活函数:不同实现尝试了多种激活函数形式,并比较了它们的推理时间
技术挑战与解决方案
实现卷积KAN面临几个关键挑战:
- 局部感受野处理:通过unfold操作将图像局部区域展开为矩阵,使KAN能够处理这些局部特征
- 参数效率:与传统卷积相比,KAN的参数更多,需要仔细设计网络结构以避免过拟合
- 计算效率:KAN的计算复杂度较高,需要优化实现以保证实用性
应用前景
初步在CIFAR-10等数据集上的实验表明,卷积KAN具有一定的应用潜力。未来可能在以下方向有发展:
- 可解释性:利用KAN的内在可解释性,分析卷积层学习到的特征
- 架构创新:探索KAN与传统卷积的混合架构
- 特定领域应用:在需要高精度函数逼近的计算机视觉任务中发挥作用
总结
卷积KAN的实现为深度学习架构设计提供了新的思路。虽然目前仍处于探索阶段,但这种将KAN网络与传统卷积操作相结合的方法,可能会在未来带来新的突破。社区中的多个实现方案也反映了这一方向的活跃度和潜力。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
521
3.71 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
762
184
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
742
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
16
1
React Native鸿蒙化仓库
JavaScript
302
349
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1