awsome-kali-MCPServers 使用指南
1. 项目介绍
awsome-kali-MCPServers 是一款为 Kali Linux 环境量身定制的 Model Context Protocol(MCP)服务器集合。该项目旨在通过集成强大的工具和灵活的特性,增强反向工程、安全测试和自动化工作流程。无论是安全研究员还是开发者,这个项目都能帮助简化您的任务。
2. 项目快速启动
构建 Docker 镜像
首先,您需要构建一个名为 kali-mcps
的 Docker 镜像。在项目根目录下运行以下命令:
docker build -t kali-mcps:latest .
启动 MCP 客户端
确保您已经安装了一个 MCP 客户端,比如 claude desktop、cline、goose 或 roo code。打开您选择的 MCP 客户端。
配置 MCP 客户端
在您的 MCP 客户端中,创建一个配置文件(例如 config.json
),内容如下:
{
"mcpServers": {
"kali-docker": {
"command": "docker",
"args": ["run", "-i", "kali-mcps:latest"]
}
}
}
在这里,kali-docker
是服务器名称,您可以自定义。command
: "docker" 指定使用 Docker 运行容器。args
定义了 Docker 运行参数:-i
启用交互模式,kali-mcps:latest
是您刚刚构建的镜像。
使用 Kali 工具
一旦配置完成,通过 MCP 客户端连接到 kali-mcps
容器,并开始使用内置的 Kali 工具(如 Nmap、nm、objdump、strings、tshark)执行任务。例如:
- 运行
basic_scan
进行基本网络扫描。 - 运行
disassemble
反汇编目标文件。 - 运行
capture_live
捕获实时网络流量。
3. 应用案例和最佳实践
网络分析
使用集成的工具进行嗅探和分析网络流量。例如,使用 Nmap 进行网络扫描,tshark 进行网络流量分析。
二进制理解
利用工具进行反向工程和功能分析,比如使用 objdump 反汇编文件,nm 列出符号。
自动化
通过脚本和服务器简化重复性任务,比如自动化的网络扫描和流量捕获。
4. 典型生态项目
awsome-kali-MCPServers 可以与多个开源项目配合使用,以下是一些典型的生态项目:
- Nmap:用于网络发现和安全审核的免费开源工具。
- Wireshark:一个网络协议分析器,用于网络问题分析、软件和通信协议开发。
- Ghidra:由 NSA 开发的一个反向工程工具,用于分析二进制文件。
- Radare2:一个开源的逆向工程框架。
通过这些工具和项目的结合使用,可以极大地扩展 awsome-kali-MCPServers 的功能和应用场景。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~057CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









