awsome-kali-MCPServers 使用指南
1. 项目介绍
awsome-kali-MCPServers 是一款为 Kali Linux 环境量身定制的 Model Context Protocol(MCP)服务器集合。该项目旨在通过集成强大的工具和灵活的特性,增强反向工程、安全测试和自动化工作流程。无论是安全研究员还是开发者,这个项目都能帮助简化您的任务。
2. 项目快速启动
构建 Docker 镜像
首先,您需要构建一个名为 kali-mcps 的 Docker 镜像。在项目根目录下运行以下命令:
docker build -t kali-mcps:latest .
启动 MCP 客户端
确保您已经安装了一个 MCP 客户端,比如 claude desktop、cline、goose 或 roo code。打开您选择的 MCP 客户端。
配置 MCP 客户端
在您的 MCP 客户端中,创建一个配置文件(例如 config.json),内容如下:
{
"mcpServers": {
"kali-docker": {
"command": "docker",
"args": ["run", "-i", "kali-mcps:latest"]
}
}
}
在这里,kali-docker 是服务器名称,您可以自定义。command: "docker" 指定使用 Docker 运行容器。args 定义了 Docker 运行参数:-i 启用交互模式,kali-mcps:latest 是您刚刚构建的镜像。
使用 Kali 工具
一旦配置完成,通过 MCP 客户端连接到 kali-mcps 容器,并开始使用内置的 Kali 工具(如 Nmap、nm、objdump、strings、tshark)执行任务。例如:
- 运行
basic_scan进行基本网络扫描。 - 运行
disassemble反汇编目标文件。 - 运行
capture_live捕获实时网络流量。
3. 应用案例和最佳实践
网络分析
使用集成的工具进行嗅探和分析网络流量。例如,使用 Nmap 进行网络扫描,tshark 进行网络流量分析。
二进制理解
利用工具进行反向工程和功能分析,比如使用 objdump 反汇编文件,nm 列出符号。
自动化
通过脚本和服务器简化重复性任务,比如自动化的网络扫描和流量捕获。
4. 典型生态项目
awsome-kali-MCPServers 可以与多个开源项目配合使用,以下是一些典型的生态项目:
- Nmap:用于网络发现和安全审核的免费开源工具。
- Wireshark:一个网络协议分析器,用于网络问题分析、软件和通信协议开发。
- Ghidra:由 NSA 开发的一个反向工程工具,用于分析二进制文件。
- Radare2:一个开源的逆向工程框架。
通过这些工具和项目的结合使用,可以极大地扩展 awsome-kali-MCPServers 的功能和应用场景。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00