首页
/ Comet-LLM 1.5.7版本发布:强化反馈评分与OpenTelemetry集成

Comet-LLM 1.5.7版本发布:强化反馈评分与OpenTelemetry集成

2025-06-07 08:42:43作者:羿妍玫Ivan

Comet-LLM是一个专注于大型语言模型(LLM)实验跟踪和管理的开源平台。它提供了丰富的功能来记录、分析和优化LLM的开发过程,包括实验跟踪、提示工程、反馈收集等核心能力。本次1.5.7版本的发布,主要围绕反馈评分系统的增强和OpenTelemetry集成优化展开。

反馈评分系统的重要改进

在1.5.7版本中,Comet-LLM对反馈评分系统进行了多项重要增强。首先是增加了对默认反馈评分定义的保护机制,防止用户意外删除系统预定义的评分标准。这一改进确保了核心评分体系的稳定性,避免因误操作导致的数据一致性问题。

同时,新版本还引入了工作空间级别的在线评估规则配置功能。这一特性允许团队在更高级别定义统一的评估标准,确保同一工作空间下的所有项目都能遵循一致的评估规范。这对于企业级用户尤其有价值,可以更好地实现评估流程的标准化管理。

Python SDK方面也新增了删除追踪反馈评分的API方法,为开发者提供了更完整的反馈管理能力。结合原有的评分创建和查询功能,现在开发者可以构建更灵活的反馈处理流程。

OpenTelemetry集成优化

1.5.7版本对OpenTelemetry的支持进行了重要优化。开发团队重构了OpenTelemetry负载到Opik内部字段的映射逻辑,使得来自不同观测系统的遥测数据能够更准确地转换为Opik的标准格式。这一改进显著提升了跨系统数据的一致性,特别是在处理复杂追踪场景时。

其他功能增强

本次更新还包括多项实用改进:

  • 增加了ClickHouse日志级别的便捷配置选项,便于运维人员根据实际需求调整日志详细程度
  • 提供了获取当前工作空间名称的API端点,简化了多工作空间环境下的集成开发
  • 数据集功能增强,支持按ID选择特定数据记录进行实验
  • 前端安全更新,升级了axios依赖版本

开发者体验优化

Comet-LLM 1.5.7继续完善开发者体验。除了上述提到的API增强外,还更新了快速入门笔记本,帮助新用户更快上手。错误处理机制也得到改进,特别是针对OpenAI流式响应解析的异常情况,增强了系统的健壮性。

总体而言,1.5.7版本在保持系统稳定性的同时,重点强化了反馈管理和观测能力,为构建更可靠的LLM应用提供了坚实基础。这些改进将特别有利于需要严格评估和监控LLM表现的企业级应用场景。

登录后查看全文
热门项目推荐

项目优选

收起
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
143
1.91 K
kernelkernel
deepin linux kernel
C
22
6
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
192
273
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
927
551
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
421
392
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
75
64
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8