Fastenhealth Onprem 项目中实验室页面术语表水平溢出问题分析
问题描述
在Fastenhealth Onprem项目的实验室页面中,术语表(Glossary)组件出现了水平方向上的溢出问题。具体表现为术语表内容超出了其所在的仪表板卡片区块的边界,导致页面布局不美观且可能影响用户体验。
技术背景
该问题出现在Windows 11操作系统上使用Google Chrome 121.0.6167.140浏览器访问时。从技术实现角度来看,这个问题涉及到前端CSS布局和HTML结构的交互。
问题根源分析
经过初步调查,这个问题可能与以下两个因素有关:
-
CSS显示属性设置:当前术语表组件使用了
display: inline-block的CSS属性,这可能导致元素在特定情况下无法正确计算其包含块的宽度。 -
HTML内容问题:术语表中可能包含来自国家医学图书馆的内容片段,这些片段可能存在HTML标签不闭合的情况,这会影响浏览器的渲染引擎正确计算元素尺寸。
解决方案探讨
针对这个问题,可以考虑以下几种解决方案:
-
修改CSS显示属性:移除
display: inline-block属性可能会解决问题,但需要全面测试以确保不会影响其他功能。 -
添加溢出控制:可以考虑为容器添加
overflow-x: auto或overflow-x: hidden属性来控制水平溢出。 -
内容预处理:对来自外部的内容进行HTML验证和清理,确保所有标签都正确闭合。
-
响应式设计调整:为术语表组件添加媒体查询和响应式设计,确保在不同屏幕尺寸下都能正确显示。
实施建议
在实际修复这个问题时,建议采取以下步骤:
- 首先在开发环境中测试移除
display: inline-block属性的影响。 - 如果效果良好,可以进一步测试在不同浏览器和设备上的表现。
- 考虑添加额外的CSS规则来限制术语表的最大宽度。
- 对于可能存在的HTML内容问题,可以添加前端验证逻辑或后端预处理步骤。
总结
Fastenhealth Onprem项目中的实验室页面术语表水平溢出问题是一个典型的前端布局问题。通过合理的CSS调整和内容处理,可以有效解决这个问题,同时保持页面的美观性和功能性。开发团队在解决这类问题时,需要综合考虑HTML结构、CSS布局和内容来源等多方面因素,才能找到最合适的解决方案。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00