Keras基于LSTM的Siamese网络用于文本相似度计算教程
2024-09-12 03:07:19作者:柯茵沙
项目介绍
该项目是基于Keras实现的深度Siamese双向LSTM网络,旨在捕捉短语或句子之间的相似性,利用词嵌入技术。Siamese架构通过两个参数相同的子网络来工作,这些网络共享权重,并且在训练时同步更新,特别适用于诸如文本相似度这样的任务。
特点:
- 使用Bidirectional LSTM以充分利用上下文信息。
- 应用预训练词嵌入,提高模型表现。
- 基于对比损失(contrastive loss)进行训练,以区分相似与不相似文本对。
项目快速启动
环境准备
首先,确保你的开发环境中安装了TensorFlow和Keras。可以通过以下命令安装必要的依赖:
pip install tensorflow keras numpy pandas
pip install -r requirements.txt
数据预处理
提供一个CSV文件sample_data.csv,其中应包含至少三列:sentences1, sentences2, 和 is_similar(表示两句话是否相似)。以下是基本的数据载入和预处理流程:
import pandas as pd
from inputHandler import word_embed_meta_data
from config import siamese_config
# 加载数据
df = pd.read_csv('sample_data.csv')
sentences1 = df['sentences1'].tolist()
sentences2 = df['sentences2'].tolist()
is_similar = df['is_similar'].tolist()
# 获取词嵌入元数据
embedding_meta_data = word_embed_meta_data(sentences1 + sentences2, siamese_config['EMBEDDING_DIM'])
# 创建句子对
sentences_pair = list(zip(sentences1, sentences2))
训练模型
配置好环境后,即可开始训练模型:
from model import SiameseBiLSTM
# 初始化配置对象并创建模型
siamese = SiameseBiLSTM(siamese_config['EMBEDDING_DIM'],
siamese_config['MAX_SEQUENCE_LENGTH'],
siamese_config['NUMBER_LSTM'],
siamese_config['NUMBER_DENSE_UNITS'],
siamese_config['RATE_DROP_LSTM'],
siamese_config['RATE_DROP_DENSE'],
siamese_config['ACTIVATION_FUNCTION'],
siamese_config['VALIDATION_SPLIT'])
# 训练模型并保存最佳模型
best_model_path = siamese.train_model(sentences_pair, is_similar, embedding_meta_data, model_save_directory='./models/')
应用案例与最佳实践
此模型可以应用于多个场景中,例如:
- 问答系统的相似度判断:评估问题的相似度以决定是否重复。
- 多语言翻译质量评估:比较源文本与机器翻译文本的相似程度。
- 文档分类与聚类:用于自动归档相似文档。
在实际应用中,确保对模型进行充分的训练,并可能需要调整超参数以适应不同数据集的特点。
示例:模型测试
一旦模型训练完成,可以用来预测新样本对的相似度:
from keras.models import load_model
from operator import itemgetter
model = load_model(best_model_path)
test_sentence_pairs = [("示例问题一", "相似问题一"), ("示例问题二", "不太相关的问题")]
test_data_x1, test_data_x2, _ = create_test_data(embedding_meta_data['tokenizer'], test_sentence_pairs, siamese_config['MAX_SEQUENCE_LENGTH'])
preds = model.predict([test_data_x1, test_data_x2], verbose=1).ravel()
results = [(pair, score) for pair, score in zip(test_sentence_pairs, preds)]
results.sort(key=itemgetter(1), reverse=True)
print(results)
典型生态项目
虽然该特定项目本身就是生态中的一个重要组件,对于文本相似度计算领域,还有其他相关项目和框架可作为补充,比如使用Transformer架构的模型。但特别提到的是,研究Siamese网络在文本领域的应用时,可以探索类似的工作如“Siamese Recurrent Architectures for Learning Sentence Similarity”所提出的模型,以及对应的其他开源实现,这些资源可以帮助开发者理解和构建更复杂的文本处理系统。
本教程提供了一个起点,让你能够快速上手并开始利用这个强大的模型进行文本相似度分析。记得在实践中调整参数,以获得最优的表现,并不断实验,以探索其在特定应用场景下的潜能。
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
271
2.56 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
222
302
Ascend Extension for PyTorch
Python
103
130
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
597
157
暂无简介
Dart
561
125
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
224
14
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
606
仓颉编译器源码及 cjdb 调试工具。
C++
118
95
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
443