Keras基于LSTM的Siamese网络用于文本相似度计算教程
2024-09-12 19:53:31作者:柯茵沙
项目介绍
该项目是基于Keras实现的深度Siamese双向LSTM网络,旨在捕捉短语或句子之间的相似性,利用词嵌入技术。Siamese架构通过两个参数相同的子网络来工作,这些网络共享权重,并且在训练时同步更新,特别适用于诸如文本相似度这样的任务。
特点:
- 使用Bidirectional LSTM以充分利用上下文信息。
- 应用预训练词嵌入,提高模型表现。
- 基于对比损失(contrastive loss)进行训练,以区分相似与不相似文本对。
项目快速启动
环境准备
首先,确保你的开发环境中安装了TensorFlow和Keras。可以通过以下命令安装必要的依赖:
pip install tensorflow keras numpy pandas
pip install -r requirements.txt
数据预处理
提供一个CSV文件sample_data.csv,其中应包含至少三列:sentences1, sentences2, 和 is_similar(表示两句话是否相似)。以下是基本的数据载入和预处理流程:
import pandas as pd
from inputHandler import word_embed_meta_data
from config import siamese_config
# 加载数据
df = pd.read_csv('sample_data.csv')
sentences1 = df['sentences1'].tolist()
sentences2 = df['sentences2'].tolist()
is_similar = df['is_similar'].tolist()
# 获取词嵌入元数据
embedding_meta_data = word_embed_meta_data(sentences1 + sentences2, siamese_config['EMBEDDING_DIM'])
# 创建句子对
sentences_pair = list(zip(sentences1, sentences2))
训练模型
配置好环境后,即可开始训练模型:
from model import SiameseBiLSTM
# 初始化配置对象并创建模型
siamese = SiameseBiLSTM(siamese_config['EMBEDDING_DIM'],
siamese_config['MAX_SEQUENCE_LENGTH'],
siamese_config['NUMBER_LSTM'],
siamese_config['NUMBER_DENSE_UNITS'],
siamese_config['RATE_DROP_LSTM'],
siamese_config['RATE_DROP_DENSE'],
siamese_config['ACTIVATION_FUNCTION'],
siamese_config['VALIDATION_SPLIT'])
# 训练模型并保存最佳模型
best_model_path = siamese.train_model(sentences_pair, is_similar, embedding_meta_data, model_save_directory='./models/')
应用案例与最佳实践
此模型可以应用于多个场景中,例如:
- 问答系统的相似度判断:评估问题的相似度以决定是否重复。
- 多语言翻译质量评估:比较源文本与机器翻译文本的相似程度。
- 文档分类与聚类:用于自动归档相似文档。
在实际应用中,确保对模型进行充分的训练,并可能需要调整超参数以适应不同数据集的特点。
示例:模型测试
一旦模型训练完成,可以用来预测新样本对的相似度:
from keras.models import load_model
from operator import itemgetter
model = load_model(best_model_path)
test_sentence_pairs = [("示例问题一", "相似问题一"), ("示例问题二", "不太相关的问题")]
test_data_x1, test_data_x2, _ = create_test_data(embedding_meta_data['tokenizer'], test_sentence_pairs, siamese_config['MAX_SEQUENCE_LENGTH'])
preds = model.predict([test_data_x1, test_data_x2], verbose=1).ravel()
results = [(pair, score) for pair, score in zip(test_sentence_pairs, preds)]
results.sort(key=itemgetter(1), reverse=True)
print(results)
典型生态项目
虽然该特定项目本身就是生态中的一个重要组件,对于文本相似度计算领域,还有其他相关项目和框架可作为补充,比如使用Transformer架构的模型。但特别提到的是,研究Siamese网络在文本领域的应用时,可以探索类似的工作如“Siamese Recurrent Architectures for Learning Sentence Similarity”所提出的模型,以及对应的其他开源实现,这些资源可以帮助开发者理解和构建更复杂的文本处理系统。
本教程提供了一个起点,让你能够快速上手并开始利用这个强大的模型进行文本相似度分析。记得在实践中调整参数,以获得最优的表现,并不断实验,以探索其在特定应用场景下的潜能。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
5分钟掌握ImageSharp色彩矩阵变换:图像色调调整的终极指南3分钟解决Cursor试用限制:go-cursor-help工具全攻略Transmission数据库迁移工具:转移种子状态到新设备如何在VMware上安装macOS?解锁神器Unlocker完整使用指南如何为so-vits-svc项目贡献代码:从提交Issue到创建PR的完整指南Label Studio数据处理管道设计:ETL流程与标注前预处理终极指南突破拖拽限制:React Draggable社区扩展与实战指南如何快速安装 JSON Formatter:让 JSON 数据阅读更轻松的终极指南Element UI表格数据地图:Table地理数据可视化如何快速去除视频水印?免费开源神器「Video Watermark Remover」一键搞定!
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
525
3.72 K
Ascend Extension for PyTorch
Python
332
395
暂无简介
Dart
766
189
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
878
586
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
165
React Native鸿蒙化仓库
JavaScript
302
352
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
748
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
985
246