Brax项目中RTX显卡NaN问题的分析与解决方案
2025-06-29 13:48:36作者:柯茵沙
问题背景
在深度强化学习领域,使用Brax框架进行物理仿真训练时,研究人员可能会遇到一个特殊问题:训练过程正常完成且表现良好,但在推理阶段却突然出现NaN(非数值)控制值。这种情况尤其在使用NVIDIA RTX系列显卡(如RTX 4090)时更为常见,而在A100等专业计算卡上则较少出现。
现象描述
该问题的主要表现为:
- 训练阶段运行正常,无任何错误提示
- 模型学习效果良好,能够完成预期任务
- 在推理阶段(特别是生成视频轨迹时)突然出现NaN控制值
- MuJoCo物理引擎报告"Nan, Inf or huge value in CTRL"警告
- JAX框架抛出"invalid value (nan) encountered"错误
根本原因分析
经过深入研究,发现该问题与GPU计算精度密切相关,具体原因包括:
- RTX显卡的默认计算精度问题:RTX系列消费级显卡与专业计算卡在浮点运算实现上存在差异
- 矩阵乘法精度不足:在复杂物理仿真场景下,默认的矩阵乘法精度可能导致数值不稳定
- JIT编译优化影响:JAX的即时编译优化可能在某些情况下放大数值不稳定性
解决方案
针对这一问题,研究人员提出了几种有效的解决方案:
1. 提高矩阵乘法精度(推荐)
import jax
jax.config.update('jax_default_matmul_precision', jax.lax.Precision.HIGH)
这种方法能在保持较好性能的同时解决NaN问题,是首选的解决方案。
2. 启用64位浮点运算
jax.config.update('jax_enable_x64', True)
虽然能彻底解决NaN问题,但会导致:
- 训练时间显著增加(约2倍)
- GPU内存占用大幅上升(从20GB增至46GB)
- 整体性能下降
3. 模型优化建议
对于复杂物理仿真场景,还可以考虑:
- 减少不必要的接触约束
- 检查并优化模型中的循环约束
- 适当调整仿真参数(时间步长、迭代次数等)
实施建议
- 首先尝试提高矩阵乘法精度方案
- 仅在极端情况下启用64位浮点运算
- 对于RTX显卡用户,建议在开发环境配置中加入精度设置
- 定期检查模型中的物理约束是否合理
总结
Brax框架在RTX显卡上出现的NaN问题主要源于硬件计算精度差异,通过适当的精度配置可以有效解决。研究人员应根据具体场景选择平衡性能与稳定性的解决方案,确保强化学习训练的可靠性和效率。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
192
212
暂无简介
Dart
632
143
React Native鸿蒙化仓库
JavaScript
243
316
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
481
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
649
271
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
297
111
仓颉编译器源码及 cjdb 调试工具。
C++
128
857
openGauss kernel ~ openGauss is an open source relational database management system
C++
158
212