神经网络开源项目教程
2024-08-20 04:42:55作者:魏侃纯Zoe
项目介绍
neural 是一个开源的神经网络库,旨在提供一个简单易用的接口来构建和训练神经网络模型。该项目支持多种常见的神经网络层,如全连接层、卷积层和循环层,并且提供了丰富的损失函数和优化器。neural 的设计理念是让用户能够快速实现和测试自己的神经网络模型,同时保持代码的清晰和可维护性。
项目快速启动
安装
首先,你需要克隆项目仓库到本地:
git clone https://github.com/yu120/neural.git
cd neural
然后,安装所需的依赖包:
pip install -r requirements.txt
示例代码
以下是一个简单的示例,展示如何使用 neural 库来构建一个全连接神经网络并进行训练:
from neural import NeuralNetwork, DenseLayer, ActivationLayer, MSELoss, SGD
# 定义网络结构
network = NeuralNetwork()
network.add(DenseLayer(2, 4)) # 输入层到隐藏层
network.add(ActivationLayer('relu'))
network.add(DenseLayer(4, 1)) # 隐藏层到输出层
network.add(ActivationLayer('sigmoid'))
# 定义损失函数和优化器
loss = MSELoss()
optimizer = SGD(learning_rate=0.1)
# 训练网络
network.train(X_train, y_train, loss, optimizer, epochs=100, batch_size=10)
应用案例和最佳实践
图像分类
neural 库可以用于图像分类任务。以下是一个使用卷积神经网络(CNN)进行图像分类的示例:
from neural import NeuralNetwork, ConvLayer, MaxPoolingLayer, FlattenLayer, DenseLayer, ActivationLayer, CrossEntropyLoss, Adam
# 定义网络结构
network = NeuralNetwork()
network.add(ConvLayer(1, 32, 3, 1)) # 卷积层
network.add(ActivationLayer('relu'))
network.add(MaxPoolingLayer(2)) # 池化层
network.add(FlattenLayer())
network.add(DenseLayer(32 * 14 * 14, 10)) # 全连接层
network.add(ActivationLayer('softmax'))
# 定义损失函数和优化器
loss = CrossEntropyLoss()
optimizer = Adam(learning_rate=0.001)
# 训练网络
network.train(X_train, y_train, loss, optimizer, epochs=50, batch_size=32)
时间序列预测
neural 库也适用于时间序列预测任务。以下是一个使用循环神经网络(RNN)进行时间序列预测的示例:
from neural import NeuralNetwork, RNNLayer, DenseLayer, ActivationLayer, MSELoss, RMSprop
# 定义网络结构
network = NeuralNetwork()
network.add(RNNLayer(1, 50)) # RNN层
network.add(ActivationLayer('tanh'))
network.add(DenseLayer(50, 1)) # 全连接层
# 定义损失函数和优化器
loss = MSELoss()
optimizer = RMSprop(learning_rate=0.001)
# 训练网络
network.train(X_train, y_train, loss, optimizer, epochs=100, batch_size=32)
典型生态项目
TensorFlow
TensorFlow 是一个广泛使用的深度学习框架,与 neural 库相比,TensorFlow 提供了更丰富的功能和更强大的性能。如果你需要处理更复杂的任务或需要更高的计算效率,可以考虑使用 TensorFlow 作为 neural 的补充。
PyTorch
PyTorch 是另一个流行的深度学习框架,以其动态计算图和易用性而闻名。PyTorch 提供了与 neural 类似的接口和功能,但具有更强大的社区支持和更多的预训练模型。如果你需要更灵活的模型定义和更丰富的资源,PyTorch 是一个不错的选择。
通过结合 neural 和其他生态项目,你可以构建出更强大和灵活的深度学习解决方案。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
528
3.73 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
172
Ascend Extension for PyTorch
Python
337
401
React Native鸿蒙化仓库
JavaScript
302
353
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
883
590
暂无简介
Dart
768
191
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
114
139
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
246