百度推荐系统技术解析:从多域图大模型到资源冷启动
在当今互联网时代,推荐系统已成为各大平台提升用户体验和商业价值的关键技术。作为国内领先的科技企业,百度在推荐系统领域持续创新,近期公开的两项技术实践——"多域图大模型在推荐系统的应用"和"推荐资源冷启动实践"尤为值得关注。本文将深入解析这两项技术的核心思想与应用价值。
多域图大模型:构建更全面的用户理解
传统推荐系统往往局限于单一领域的数据分析,难以捕捉用户跨域行为的复杂关联。百度提出的多域图大模型技术,通过构建覆盖多个业务领域的统一图结构,实现了对用户行为的全景式建模。
该技术的核心创新点在于:
-
跨域图结构设计:将不同业务领域(如搜索、资讯、视频等)的用户行为数据整合为统一的异构图,节点可表示用户、物品、查询等多种实体,边则反映实体间的丰富交互关系。
-
图神经网络优化:针对大规模图数据的特性,设计了高效的图采样和特征聚合策略,确保模型在十亿级节点规模的图上仍能高效训练和推理。
-
动态图更新机制:引入实时图更新算法,能够快速捕捉用户最新行为对图结构的影响,显著提升了推荐结果的时效性。
实际应用中,该技术使百度推荐系统的点击率提升了15%以上,用户停留时长增加20%,验证了多域图模型在理解用户复杂兴趣方面的优势。
资源冷启动:解决新物品推荐的难题
推荐系统中的冷启动问题一直是业界难题,特别是对于新上架资源(如文章、视频等)的推荐。百度提出的资源冷启动解决方案,通过多维度特征挖掘和迁移学习技术,有效提升了新物品的曝光效果。
该方案的主要技术亮点包括:
-
内容特征深度提取:利用预训练语言模型和视觉模型,从文本、图像等多模态内容中提取高维语义特征,即使缺乏用户行为数据也能准确表征物品特性。
-
跨域知识迁移:建立不同业务领域间的特征映射关系,将热门领域的知识迁移到冷启动资源上,显著缩短了"冷"期。
-
渐进式曝光策略:设计智能探索机制,根据用户反馈动态调整新物品的曝光量,在保证用户体验的前提下最大化冷启动效果。
实践表明,该技术使新资源的7日留存率提升了30%,有效解决了"马太效应"导致的资源分配不均问题。
技术启示与展望
百度在推荐系统领域的技术实践为行业提供了宝贵经验。多域图大模型展示了跨域数据融合的价值,而资源冷启动方案则为解决推荐公平性问题提供了可行路径。未来,随着大模型技术的普及,推荐系统有望在以下方向取得突破:
-
多模态理解能力增强:结合视觉、语音等多模态信号,构建更丰富的物品表征。
-
因果推理能力提升:超越相关性分析,深入理解用户决策的因果机制。
-
个性化与多样性的平衡:开发更智能的探索-利用策略,在满足用户已知兴趣的同时拓展新兴趣。
推荐系统技术的持续创新,将推动互联网服务向更智能、更个性化的方向发展,为用户创造更大价值。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00