百度推荐系统技术解析:从多域图大模型到资源冷启动
在当今互联网时代,推荐系统已成为各大平台提升用户体验和商业价值的关键技术。作为国内领先的科技企业,百度在推荐系统领域持续创新,近期公开的两项技术实践——"多域图大模型在推荐系统的应用"和"推荐资源冷启动实践"尤为值得关注。本文将深入解析这两项技术的核心思想与应用价值。
多域图大模型:构建更全面的用户理解
传统推荐系统往往局限于单一领域的数据分析,难以捕捉用户跨域行为的复杂关联。百度提出的多域图大模型技术,通过构建覆盖多个业务领域的统一图结构,实现了对用户行为的全景式建模。
该技术的核心创新点在于:
-
跨域图结构设计:将不同业务领域(如搜索、资讯、视频等)的用户行为数据整合为统一的异构图,节点可表示用户、物品、查询等多种实体,边则反映实体间的丰富交互关系。
-
图神经网络优化:针对大规模图数据的特性,设计了高效的图采样和特征聚合策略,确保模型在十亿级节点规模的图上仍能高效训练和推理。
-
动态图更新机制:引入实时图更新算法,能够快速捕捉用户最新行为对图结构的影响,显著提升了推荐结果的时效性。
实际应用中,该技术使百度推荐系统的点击率提升了15%以上,用户停留时长增加20%,验证了多域图模型在理解用户复杂兴趣方面的优势。
资源冷启动:解决新物品推荐的难题
推荐系统中的冷启动问题一直是业界难题,特别是对于新上架资源(如文章、视频等)的推荐。百度提出的资源冷启动解决方案,通过多维度特征挖掘和迁移学习技术,有效提升了新物品的曝光效果。
该方案的主要技术亮点包括:
-
内容特征深度提取:利用预训练语言模型和视觉模型,从文本、图像等多模态内容中提取高维语义特征,即使缺乏用户行为数据也能准确表征物品特性。
-
跨域知识迁移:建立不同业务领域间的特征映射关系,将热门领域的知识迁移到冷启动资源上,显著缩短了"冷"期。
-
渐进式曝光策略:设计智能探索机制,根据用户反馈动态调整新物品的曝光量,在保证用户体验的前提下最大化冷启动效果。
实践表明,该技术使新资源的7日留存率提升了30%,有效解决了"马太效应"导致的资源分配不均问题。
技术启示与展望
百度在推荐系统领域的技术实践为行业提供了宝贵经验。多域图大模型展示了跨域数据融合的价值,而资源冷启动方案则为解决推荐公平性问题提供了可行路径。未来,随着大模型技术的普及,推荐系统有望在以下方向取得突破:
-
多模态理解能力增强:结合视觉、语音等多模态信号,构建更丰富的物品表征。
-
因果推理能力提升:超越相关性分析,深入理解用户决策的因果机制。
-
个性化与多样性的平衡:开发更智能的探索-利用策略,在满足用户已知兴趣的同时拓展新兴趣。
推荐系统技术的持续创新,将推动互联网服务向更智能、更个性化的方向发展,为用户创造更大价值。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00