EntityFramework Core 中 DateOnly 与 TimeOnly 类型转换的 SQL Server 实现优化
在 EntityFramework Core 8.0 版本中,微软引入了对 DateOnly 和 TimeOnly 这两种新型日期时间类型的支持。这两种类型分别用于表示纯日期和纯时间,而不包含时区信息。然而,在实际应用中,我们经常需要将 DateOnly 和 TimeOnly 组合成完整的 DateTime 类型。
问题背景
在 C# 代码中,我们可以直接调用 DateOnly 的 ToDateTime 方法,并传入一个 TimeOnly 对象来组合成完整的 DateTime。例如:
dateOnly.ToDateTime(timeOnly)
然而,当这样的代码在 EntityFramework Core 的 LINQ 查询中使用时,EF Core 需要能够将其正确地转换为 SQL 语句。对于 SQL Server 数据库,最合适的转换方式是使用 DATETIMEFROMPARTS 函数。
技术解决方案
EF Core 团队决定实现这一转换,将 C# 中的 DateOnly.ToDateTime(TimeOnly) 方法调用转换为 SQL Server 的 DATETIMEFROMPARTS 函数调用。具体转换逻辑如下:
原始 C# 代码:
dateOnly.ToDateTime(timeOnly)
转换为:
EF.Functions.DateTimeFromParts(
dateOnly.Year, dateOnly.Month, dateOnly.Day,
timeOnly.Hour, timeOnly.Minute, timeOnly.Second, timeOnly.Millisecond)
最终生成的 SQL 语句:
DATETIMEFROMPARTS(
DATEPART(year, dateOnly), DATEPART(month, dateOnly), DATEPART(day, dateOnly),
DATEPART(hour, timeOnly), DATEPART(minute, timeOnly), DATEPART(second, timeOnly), DATEPART(millisecond, timeOnly))
实现注意事项
在实现这一转换时,开发团队考虑了以下几点重要因素:
-
参数重复问题:这种转换方式会导致参数被多次提取(年、月、日、时、分、秒、毫秒)。当参数是简单列值时没有问题,但如果参数是复杂的标量子查询,会导致子查询被多次执行,影响性能。因此,初步实现中不会对这种情况进行转换。
-
数据库兼容性:目前这一转换仅针对 SQL Server 实现,因为不同数据库系统对日期时间处理的函数差异较大。例如,SQLite 就需要不同的处理方式。
-
测试用例:为了确保转换的正确性,需要添加多种测试场景,包括:
- DateOnly 与常量 TimeOnly 的组合
- DateOnly 与属性 TimeOnly 的组合
- 各种边界条件的测试
实际应用示例
在实际应用中,这种转换可以用于各种查询场景,例如:
// 查询特定日期时间组合的记录
var missions = context.Missions
.Where(m => m.Date.ToDateTime(m.Time) == new DateTime(1990, 11, 10, 10, 15, 50, 500))
.ToList();
// 或者与常量时间组合
var eveningMissions = context.Missions
.Where(m => m.Date.ToDateTime(new TimeOnly(21, 5, 19, 94)) == new DateTime(1990, 11, 10, 21, 5, 19, 94))
.ToList();
总结
这一改进使得 EntityFramework Core 能够更自然地在 LINQ 查询中处理 DateOnly 和 TimeOnly 类型的组合操作,同时保持高效的 SQL 转换。对于使用 SQL Server 作为数据库后端的应用程序,这一特性将大大简化日期时间处理的代码,同时保证查询性能。
随着 .NET 对 DateOnly 和 TimeOnly 类型的推广使用,EntityFramework Core 也在不断完善对这些新型日期时间类型的支持,为开发者提供更加类型安全、语义清晰的日期时间处理方式。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00