PyTorch Lightning中last.ckpt恢复训练问题的分析与解决
2025-05-05 08:18:18作者:庞队千Virginia
问题背景
在使用PyTorch Lightning进行模型训练时,开发者经常会利用ModelCheckpoint回调来保存训练过程中的检查点。其中,save_last参数被设计用来保存一个指向最新检查点的符号链接(last.ckpt),方便开发者随时恢复训练。
然而,在PyTorch Lightning 2.1.x版本中,存在一个bug导致无法从last.ckpt恢复训练。当尝试使用trainer.fit(ckpt_path="path/to/last.ckpt")时,系统会抛出"Checkpoint file not found"错误,尽管文件确实存在且符号链接也正确指向了有效的检查点文件。
问题复现
通过以下代码可以复现该问题:
import lightning.pytorch as pl
from lightning.pytorch import LightningModule, Trainer
from lightning.pytorch.callbacks import ModelCheckpoint
from torch.utils.data import DataLoader, Dataset
# 定义简单数据集和模型
class RandomDataset(Dataset):
def __init__(self, size, length):
self.data = torch.randn(length, size)
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
return self.data[idx]
class SimpleModel(LightningModule):
def __init__(self):
super().__init__()
self.layer = torch.nn.Linear(32, 2)
def forward(self, x):
return self.layer(x)
def training_step(self, batch, batch_idx):
loss = self(batch).sum()
self.log("train_loss", loss)
return loss
def configure_optimizers(self):
return torch.optim.SGD(self.parameters(), lr=0.1)
# 配置训练参数
trainer_args = {
"max_epochs": 10,
"callbacks": [ModelCheckpoint(monitor="train_loss", save_last="link", mode="min", save_top_k=5)]
}
# 第一次训练
train_data = DataLoader(RandomDataset(32, 64), batch_size=2)
model = SimpleModel()
trainer = Trainer(**trainer_args)
trainer.fit(model, train_data)
# 尝试从last.ckpt恢复训练
trainer = Trainer(**trainer_args)
trainer.fit(model, train_data, ckpt_path="lightning_logs/version_0/checkpoints/last.ckpt")
问题分析
该问题主要源于PyTorch Lightning 2.1.x版本中检查点加载逻辑的一个缺陷。当使用符号链接作为检查点路径时,系统无法正确解析符号链接指向的实际文件路径,导致文件查找失败。
具体表现为:
save_last="link"参数正确创建了last.ckpt符号链接- 符号链接正确指向了最新的检查点文件
- 但在尝试加载时,系统无法处理符号链接,直接尝试加载符号链接本身而非其指向的文件
解决方案
该问题已在PyTorch Lightning的代码库中得到修复,修复提交为#19303。修复后的版本将正确处理符号链接,能够成功从last.ckpt恢复训练。
对于遇到此问题的开发者,建议采取以下措施:
- 升级到PyTorch Lightning 2.1.4或更高版本
- 如果暂时无法升级,可以手动解析符号链接路径:
import os
# 手动解析符号链接
real_ckpt_path = os.path.realpath("lightning_logs/version_0/checkpoints/last.ckpt")
trainer.fit(model, train_data, ckpt_path=real_ckpt_path)
最佳实践
在使用PyTorch Lightning的检查点功能时,建议:
- 明确指定
save_last参数为True或"link" - 定期检查保存的检查点文件是否完整
- 在恢复训练前,先验证检查点文件是否可加载
- 保持PyTorch Lightning版本更新,以获取最新的bug修复和功能改进
通过理解并正确处理检查点恢复问题,开发者可以更高效地利用PyTorch Lightning进行模型训练,特别是在需要中断后恢复训练的场景下。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
404
暂无简介
Dart
771
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355