Apache UIMA C++ 开源项目指南
2024-09-02 18:38:50作者:丁柯新Fawn
Apache UIMA(Unstructured Information Management Architecture)是一种框架,用于分析大量非结构化文本数据,识别并提取有意义的信息片段。本指南专注于其C++实现版,uima-uimacpp,旨在帮助开发者快速理解和操作该开源项目。
1. 项目目录结构及介绍
Apache UIMA C++ 的仓库遵循了清晰的结构设计,以便于开发者导航和维护:
uima-uimacpp/
├── bin/ # 编译后的可执行文件存放位置
├── build/ # CMake构建系统产生的中间文件和最终库
├── contrib/ # 第三方贡献的组件或示例代码
├── doc/ # 文档资料,包括API参考和开发指南
├── examples/ # 示例应用,展示如何使用UIMA C++进行基本任务
├── src/ # 主要源代码存放处,分为多个子目录以组织不同功能模块
│ ├── cas/ # CAS (Common Analysis System) 相关代码
│ ├── components/ # 核心组件和处理器实现
│ ├── framework/ # UIMA框架的核心类
│ └── ... # 更多按功能划分的源码目录
├── test/ # 单元测试和集成测试代码
├── cmake/ # CMake相关的脚本和设置
├── CMakeLists.txt # CMake的主配置文件
└── README.md # 项目的主要说明文件,包括安装和快速入门指导
2. 项目的启动文件介绍
在 uima-uimacpp 中,并没有单一的“启动文件”如同传统应用程序的main()函数所在的文件那样简单。不过,对于开发者的入口通常在于编写的UIMA应用或者运行提供的示例程序。例如,在 examples 目录中,你可以找到若干个.cpp文件,如 HelloWorldAnnotator.cpp,它展示了如何创建一个简单的UIMA annotator(注解器)。开发时,你会从定义自己的annotator或pipeline开始,然后通过CMake构建系统编译你的应用程序。
3. 项目的配置文件介绍
UIMA C++ 需要通过XML配置文件来定义处理流程(也称为Pipeline)和组件。主要的配置文件是.desc描述文件,通常位于项目的特定路径下,或者指定为命令行参数。这些文件描述了:
- Component Descriptor: 定义每一个annotator或服务的逻辑行为。
- Collection Reader Descriptor: 描述数据输入的方式,比如从文件读取文本。
- Cas Consumer Descriptor: 处理CAS(Common Analysis Structure)后的行为,比如保存结果。
- Pipeline Configuration: 如何连接上述组件形成处理链路。
例如,一个典型的开始点可能是创建或修改ExamplePipeline.desc,其中指定了应用程序的启动流程和各个组件之间的关系。
请注意,实际操作时,需详细阅读官方文档和示例,确保正确理解每个配置元素的含义和用途,以充分利用Apache UIMA C++的功能。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-X1-7BSpark-Prover 是由科大讯飞团队开发的专用大型语言模型,专为 Lean4 中的自动定理证明而设计。该模型采用创新的三阶段训练策略,显著增强了形式化推理能力,在同等规模的开源模型中实现了最先进的性能。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
Qt控件CSS样式实例大全 - 打造现代化GUI界面的终极指南 2023年最新HTMLCSSJS组件库:提升前端开发效率的必备资源 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
312
2.73 K
deepin linux kernel
C
24
7
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
639
244
仓颉编译器源码及 cjdb 调试工具。
C++
124
851
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
470
Ascend Extension for PyTorch
Python
151
178
暂无简介
Dart
605
135
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
236
84
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
364
3.01 K
React Native鸿蒙化仓库
JavaScript
237
310