BenchmarkingTutorial项目:GPU张量核心操作的正确计数方法
2025-06-27 02:11:25作者:吴年前Myrtle
项目背景
BenchmarkingTutorial是一个专注于GPU性能基准测试的开源项目,特别关注Nvidia GPU中张量核心(Tensor Core)的性能测量。该项目通过多种技术手段,包括CUDA C++和PTX汇编,探索不同GPU架构下矩阵乘法等张量操作的性能特征。
张量核心计数的挑战
测量张量核心的吞吐量(TOPS)是一个复杂的技术挑战,主要原因在于:
-
指令集多样性:Nvidia每一代GPU都会引入新的矩阵乘法指令、新的数据块大小、新的数值类型以及混合精度方案。这些变化形成了PTX IR中最长的指令之一。
-
协作规模变化:不同GPU架构中,张量核心的调度和协作执行规模各不相同:
- Volta之前的架构:每个GPU线程执行自己的标量乘加操作
- Volta架构:8个线程组成"quadpair"协作执行矩阵乘法
- Ampere架构:32个线程组成的"warp"共同工作
- Hopper架构:128个线程(4个连续warp)组成"warp group"
- Blackwell架构:引入全新的
tcgen05.*
指令命名空间
-
编译器优化干扰:PTXAS汇编器会优化掉看似无用的代码块,这使得准确测量变得困难。
解决方案
项目通过以下方法解决了这些挑战:
协作规模标记与TOPS计算
针对不同架构的协作规模差异,项目明确标记了每种指令家族的协作"规模",并采用不同的TOPS计算方法。例如:
- Volta的"quadpair":8线程协作
- Ampere的warp:32线程协作
- Hopper的warp group:128线程协作
防止编译器优化的技巧
- CUDA C++中的条件保护:
if (threadIdx.x == 2147483647) wmma::store_matrix_sync(nullptr, c_frag, 16, wmma::mem_row_major);
通过添加不可能的条件和看似有副作用的操作,防止编译器优化掉关键计算。
- PTX中的全局变量导出:
.visible .global .align 4 .f32 dummy_sink_f32[32];
st.global.volatile.f32 [dummy_sink_f32], accum0;
定义全局变量并强制写入计算结果,使计算变得"可观察"。
- WGMMA的有效描述符: 对于Hopper的WGMMA指令,项目展示了如何组装有效的共享内存块描述符,即使只是用于基准测试。
技术实现细节
项目新增了多种PTX内核来展示GPGPU开发的不同方面:
-
精度支持扩展:
- 为Ampere添加了
f16f32
WMMA变体 - 为Volta添加了
f16f32
MMA变体
- 为Ampere添加了
-
WGMMA优化:
- 添加了内联PTX的C++实现
- 实现了WGMMA同步机制
- 移除了小型WGMMA以保持代码简洁
-
同步与等待:
- 修复了
tf32
性能问题 - 正确实现了栅栏等待机制
- 修复了
性能测量最佳实践
基于项目经验,进行GPU张量核心性能测量时应注意:
- 了解目标GPU架构的协作规模特性
- 使用适当的防护措施防止编译器过度优化
- 对于WGMMA等新指令,确保内存描述符有效
- 考虑不同精度模式(f16f32, tf32等)的性能差异
- 正确实现同步机制,特别是对于异步操作
总结
BenchmarkingTutorial项目深入研究了GPU张量核心性能测量的复杂性,提供了实用的解决方案和代码示例。通过理解不同GPU架构的特性、采用适当的防护措施防止编译器优化、以及正确实现各种同步机制,开发者可以更准确地测量和比较不同GPU架构下张量核心的实际性能表现。这些技术对于深度学习框架优化、高性能计算应用开发等领域具有重要参考价值。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++097AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
202
2.17 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
61
94

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
977
575

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
83

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133