使用Cirkit构建和训练概率电路模型:MNIST图像分布学习实战
2025-06-02 13:48:40作者:盛欣凯Ernestine
引言
概率电路(Probabilistic Circuits)是一种强大的概率图模型表示方法,它通过分层结构组合简单分布来建模复杂概率分布。本文将介绍如何使用Cirkit工具包构建、训练和评估一个专门用于MNIST手写数字图像分布建模的概率电路模型。
概率电路基础概念
概率电路由三种基本层组成:
- 输入层:直接建模原始变量的分布(如像素值)
- 乘积层:对输入进行分解组合
- 求和层:混合不同组件
与传统神经网络不同,概率电路具有明确的可解释性结构,并且能够保证某些重要性质如可分解性和平滑性。
构建符号电路
在Cirkit中,我们首先构建一个符号电路,这是一种抽象表示,定义了电路的结构和连接方式,但不包含具体参数。
from cirkit.templates import data_modalities, utils
symbolic_circuit = data_modalities.image_data(
(1, 28, 28), # MNIST图像形状(通道数,高,宽)
region_graph='quad-graph', # 使用四叉树区域图结构
input_layer='categorical', # 输入层使用分类分布
num_input_units=64, # 每个输入层64个单元
sum_product_layer='cp', # 使用CP(张量积)求和-乘积层
num_sum_units=64, # 每个求和层64个单元
sum_weight_param=utils.Parameterization(
activation='softmax', # 使用softmax激活
initialization='normal' # 权重正态初始化
)
)
这种结构特别适合图像数据,因为它通过区域图利用了像素间的空间局部性。
电路编译与参数初始化
符号电路需要编译为可执行的PyTorch模块才能进行训练和推理:
from cirkit.pipeline import compile
circuit = compile(symbolic_circuit)
编译后的电路实际上是一个PyTorch模型,包含约2500万可学习参数。我们可以检查电路的结构性质:
print(f'结构性质:')
print(f'平滑性: {circuit.is_smooth}') # 保证边缘化计算正确
print(f'可分解性: {circuit.is_decomposable}') # 保证高效精确推理
MNIST数据准备
我们使用标准MNIST数据集,并进行适当预处理:
from torchvision import transforms, datasets
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Lambda(lambda x: (255 * x.view(-1)).long()) # 展平并缩放像素值
])
data_train = datasets.MNIST('data', train=True, transform=transform)
data_test = datasets.MNIST('data', train=False, transform=transform)
模型训练
训练过程采用标准的PyTorch训练流程,使用负对数似然作为损失函数:
optimizer = optim.Adam(circuit.parameters(), lr=0.01)
for epoch in range(10):
for batch, _ in train_loader:
batch = batch.to(device)
log_likelihoods = circuit(batch)
loss = -log_likelihoods.mean()
loss.backward()
optimizer.step()
optimizer.zero_grad()
训练过程中可以观察到负对数似然(NLL)稳步下降,表明模型正在学习数据分布。
模型评估
我们使用测试集评估模型性能,计算两个关键指标:
- 平均对数似然(LL):衡量模型对测试数据的拟合程度
- 每维比特数(bpd):将似然转换为信息论单位,便于比较
with torch.no_grad():
test_ll = 0.0
for batch, _ in test_loader:
batch = batch.to(device)
test_ll += circuit(batch).sum().item()
avg_ll = test_ll / len(data_test)
bpd = -avg_ll / (28*28*np.log(2)) # 转换为比特/维度
典型的结果可能在1.25 bpd左右,这与简单的生成模型性能相当,但概率电路具有更好的可解释性。
高级应用
训练好的概率电路可以支持多种推理任务:
- 密度估计:计算任意图像的概率密度
- 边缘查询:计算部分像素的边际分布
- 采样:生成新的图像样本
- 条件推理:在已知部分像素时推断其余部分
例如,进行条件推理的代码可能如下:
# 假设我们已知前100个像素的值
evidence = torch.zeros(784)
evidence[:100] = observed_values
# 计算条件分布
marginal = circuit.marginal(evidence)
结论
通过Cirkit构建的概率电路为图像分布建模提供了一种结构清晰、理论保证的方法。虽然其性能可能不及最先进的深度生成模型,但在可解释性、精确推理能力方面具有独特优势。这种技术特别适合需要可靠概率估计的应用场景,如异常检测、不确定性量化等。
未来工作可以探索更复杂的电路结构、结合深度学习组件,或者应用于更高分辨率的图像数据。概率电路为概率建模提供了一个富有前景的研究方向。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
8
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
654
279
暂无简介
Dart
637
145
Ascend Extension for PyTorch
Python
200
219
仓颉编译器源码及 cjdb 调试工具。
C++
129
861
React Native鸿蒙化仓库
JavaScript
246
316
openGauss kernel ~ openGauss is an open source relational database management system
C++
158
213
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.12 K
630
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的是一款高效、可靠的Transformer加速库,基于华为Ascend AI处理器,提供Transformer定制化场景的高性能融合算子。
C++
76
100