tcconfig v0.30.0 版本发布:网络流量控制工具的重要更新
tcconfig 是一个基于 Linux 系统的网络流量控制工具,它提供了简单易用的命令行接口来配置和管理网络流量控制规则。该项目基于 Python 开发,通过封装 Linux 的 tc 命令,使得网络工程师和系统管理员能够更方便地设置带宽限制、延迟、丢包率等网络参数,用于网络性能测试和模拟不同网络环境。
近日,tcconfig 发布了 v0.30.0 版本,这个版本包含了多项重要改进和功能更新。本文将详细介绍这些变化及其技术意义。
主要更新内容
安装脚本修复
本次版本修复了安装脚本 installer.sh 的 URL 问题(issue #190)。这个修复确保了用户能够正确下载和安装 tcconfig,提高了安装过程的可靠性。项目团队还新增了一个 CI 任务来专门测试安装脚本的功能,进一步保障了安装流程的质量。
HTB 队列规则优化
在流量控制方面,v0.30.0 对 HTB(Hierarchical Token Bucket)队列规则的 burst 和 cburst 参数进行了优化。现在这些参数会被设置为最小可用大小,这一改进可以:
- 提高流量控制的精确度
- 减少不必要的缓冲区占用
- 使流量整形更加平滑和准确
平台支持更新
随着 Ubuntu 新版本的发布,tcconfig 也相应调整了支持策略:
- 新增对 Ubuntu 24.04(Noble)的支持
- 移除了对 Ubuntu 20.04 的支持
- 在 CI 和构建工作流中同步更新了这些变化
Python 版本支持调整
考虑到 Python 生态的发展,v0.30.0 版本对 Python 的支持范围进行了调整:
- 停止支持 Python 3.7 和 3.8 版本
- 新增对 Python 3.13 的支持
- 更新了依赖包
path
和DataProperty
的版本约束
技术意义与应用场景
tcconfig 的这些更新对于网络性能测试和网络环境模拟具有重要意义:
-
更精确的网络模拟:HTB 参数的优化使得网络工程师能够更精确地模拟各种网络条件,如带宽限制、延迟和丢包等。
-
更好的兼容性:支持最新的 Ubuntu 和 Python 版本确保了工具在现代系统上的可用性。
-
更可靠的部署:安装脚本的修复和测试增强了部署过程的可靠性,减少了用户遇到问题的可能性。
这些改进使得 tcconfig 成为网络性能测试、应用开发和系统调试中更加强大和可靠的工具。无论是测试应用程序在不同网络条件下的表现,还是模拟生产环境中的网络问题,tcconfig 都提供了简单而有效的解决方案。
总结
tcconfig v0.30.0 版本通过多项改进和优化,提升了工具的稳定性、精确度和兼容性。从安装过程的改进到核心功能的优化,再到平台支持的更新,这些变化都体现了项目团队对产品质量和用户体验的关注。对于需要进行网络性能测试和网络环境模拟的用户来说,升级到这个新版本将获得更好的使用体验和更精确的控制能力。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~087CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava05GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









