SecretFlow 隐语项目中 SplitRec 拆分学习的标签推断攻击验证
2025-07-01 07:27:19作者:宣利权Counsellor
概述
在联邦学习场景下,SplitRec 是一种常见的拆分学习框架,它允许参与方在不直接共享原始数据的情况下协同训练模型。然而,这种框架也可能面临安全风险,特别是标签推断攻击(Label Inference Attack)。本文详细记录了在 SecretFlow 隐语项目中验证 SplitRec 框架下标签推断攻击的过程与结果。
实验环境搭建
验证实验首先需要搭建 SecretFlow 的运行环境。我们使用 Python 3.8 及以上版本,并安装了最新版的 SecretFlow 框架。环境配置完成后,通过简单的导入测试确认框架功能正常。
数据准备阶段
实验中使用了模拟的垂直联邦学习数据集,包含特征数据和标签数据。数据集被划分为训练集和测试集,并按照参与方的角色(如客户端和服务器)进行分配。数据预处理包括标准化和分批处理,以适应深度学习模型的训练需求。
模型架构设计
SplitRec 框架的核心是拆分学习模型(SLModel),我们设计了以下组件:
- 底部模型:部署在客户端,处理原始特征数据
 - 顶部模型:部署在服务器端,接收来自客户端的嵌入并完成最终预测
 - 攻击者模型:专门设计用于实施标签推断攻击
 
模型采用全连接神经网络结构,使用 ReLU 激活函数,并配置了适当的损失函数和优化器。
攻击模型构建
标签推断攻击的关键在于构建有效的攻击者模型:
- 攻击者模型结构:采用多层感知机,输入为中间嵌入特征,输出为预测标签
 - 攻击数据准备:收集模型训练过程中产生的中间嵌入和梯度信息
 - 攻击策略:利用监督学习方式训练攻击者模型,使其能够从中间表示中推断出原始标签
 
训练与攻击过程
实验按照以下步骤进行:
- 主模型训练:SplitRec 模型在正常模式下进行训练
 - 攻击者训练:在模型训练的同时,攻击者收集必要信息并训练自己的推断模型
 - 攻击评估:使用测试集评估攻击者推断标签的准确率
 
实验结果分析
实验结果显示,攻击者能够以较高的准确率推断出原始标签,证实了 SplitRec 框架在这种攻击场景下的脆弱性。具体表现包括:
- 攻击准确率显著高于随机猜测
 - 随着主模型训练轮次增加,攻击效果有所提升
 - 不同网络结构对攻击效果有显著影响
 
安全建议
基于实验结果,我们提出以下安全增强建议:
- 引入差分隐私技术,在梯度传递时添加噪声
 - 采用安全聚合方法,防止单个参与方获取完整梯度信息
 - 设计专门的防御机制检测和抵抗标签推断攻击
 - 定期进行安全审计和风险评估
 
结论
本次验证实验成功复现了 SplitRec 框架下的标签推断攻击,证实了该安全威胁的严重性。实验结果强调了在设计和部署拆分学习系统时考虑安全因素的重要性。未来工作可以进一步探索更强大的防御机制,在保证模型性能的同时提高系统安全性。
登录后查看全文 
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
 
最新内容推荐
 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
274
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
222
302
Ascend Extension for PyTorch
Python
103
132
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
597
157
暂无简介
Dart
564
126
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
239
14
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
仓颉编译器源码及 cjdb 调试工具。
C++
118
98
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
445