SecretFlow 隐语项目中 SplitRec 拆分学习的标签推断攻击验证
2025-07-01 14:04:47作者:宣利权Counsellor
概述
在联邦学习场景下,SplitRec 是一种常见的拆分学习框架,它允许参与方在不直接共享原始数据的情况下协同训练模型。然而,这种框架也可能面临安全风险,特别是标签推断攻击(Label Inference Attack)。本文详细记录了在 SecretFlow 隐语项目中验证 SplitRec 框架下标签推断攻击的过程与结果。
实验环境搭建
验证实验首先需要搭建 SecretFlow 的运行环境。我们使用 Python 3.8 及以上版本,并安装了最新版的 SecretFlow 框架。环境配置完成后,通过简单的导入测试确认框架功能正常。
数据准备阶段
实验中使用了模拟的垂直联邦学习数据集,包含特征数据和标签数据。数据集被划分为训练集和测试集,并按照参与方的角色(如客户端和服务器)进行分配。数据预处理包括标准化和分批处理,以适应深度学习模型的训练需求。
模型架构设计
SplitRec 框架的核心是拆分学习模型(SLModel),我们设计了以下组件:
- 底部模型:部署在客户端,处理原始特征数据
- 顶部模型:部署在服务器端,接收来自客户端的嵌入并完成最终预测
- 攻击者模型:专门设计用于实施标签推断攻击
模型采用全连接神经网络结构,使用 ReLU 激活函数,并配置了适当的损失函数和优化器。
攻击模型构建
标签推断攻击的关键在于构建有效的攻击者模型:
- 攻击者模型结构:采用多层感知机,输入为中间嵌入特征,输出为预测标签
- 攻击数据准备:收集模型训练过程中产生的中间嵌入和梯度信息
- 攻击策略:利用监督学习方式训练攻击者模型,使其能够从中间表示中推断出原始标签
训练与攻击过程
实验按照以下步骤进行:
- 主模型训练:SplitRec 模型在正常模式下进行训练
- 攻击者训练:在模型训练的同时,攻击者收集必要信息并训练自己的推断模型
- 攻击评估:使用测试集评估攻击者推断标签的准确率
实验结果分析
实验结果显示,攻击者能够以较高的准确率推断出原始标签,证实了 SplitRec 框架在这种攻击场景下的脆弱性。具体表现包括:
- 攻击准确率显著高于随机猜测
- 随着主模型训练轮次增加,攻击效果有所提升
- 不同网络结构对攻击效果有显著影响
安全建议
基于实验结果,我们提出以下安全增强建议:
- 引入差分隐私技术,在梯度传递时添加噪声
- 采用安全聚合方法,防止单个参与方获取完整梯度信息
- 设计专门的防御机制检测和抵抗标签推断攻击
- 定期进行安全审计和风险评估
结论
本次验证实验成功复现了 SplitRec 框架下的标签推断攻击,证实了该安全威胁的严重性。实验结果强调了在设计和部署拆分学习系统时考虑安全因素的重要性。未来工作可以进一步探索更强大的防御机制,在保证模型性能的同时提高系统安全性。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
245
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
662
312
React Native鸿蒙化仓库
JavaScript
262
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
860
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218