在Perlmutter系统上编译使用CUDALibrarySamples中的cuFFTMp
背景介绍
cuFFTMp是NVIDIA提供的分布式快速傅里叶变换(FFT)库,它基于NVIDIA Collective Communications Library(NCCL)和NVIDIA SHMEM(NVSHMEM)实现,能够在多个GPU之间高效地进行FFT计算。Perlmutter是美国国家能源研究科学计算中心(NERSC)的超级计算机系统,配备了NVIDIA A100 GPU。
常见编译问题分析
在Perlmutter系统上编译使用cuFFTMp时,开发者经常会遇到两类典型的链接错误:
-
符号重复定义错误
当同时链接libnvshmem.a和libnvshmem_device.a时,会出现多个相同符号的定义冲突,这是因为这两个库包含了相同的设备端代码实现。 -
未定义引用错误
当没有正确链接NVSHMEM库或者链接顺序不当时,会出现各种NVSHMEM API的未定义引用错误,这表明链接器无法找到必要的NVSHMEM实现。
正确编译方法
经过NVIDIA开发者的验证,正确的编译命令应遵循以下原则:
-
仅使用设备端NVSHMEM库
避免同时链接libnvshmem.a和libnvshmem_device.a,只使用后者及其配套的主机端库。 -
正确的库链接顺序
cuFFTMp库(-lcufftMp)应该放在NVSHMEM库(-lnvshmem_device -lnvshmem_host)之前。 -
避免冗余链接
cuFFTMp已经包含了cuFFT的所有功能,因此不需要额外链接-lcufft。
示例编译命令:
CC -gpu=cc80 test_cufft.cu \
-I /opt/nvidia/hpc_sdk/Linux_x86_64/23.9/comm_libs/nvshmem/include/ \
-I /opt/nvidia/hpc_sdk/Linux_x86_64/23.9/math_libs/include/cufftmp \
-L /opt/nvidia/hpc_sdk/Linux_x86_64/23.9/math_libs/lib64 \
-L /opt/nvidia/hpc_sdk/Linux_x86_64/23.9/comm_libs/nvshmem/lib \
-Wl,-rpath,/opt/nvidia/hpc_sdk/Linux_x86_64/23.9/comm_libs/nvshmem/lib \
-lcufftMp -lnvshmem_device -lnvshmem_host
技术要点
-
NVSHMEM架构理解
NVSHMEM采用分离式设计,libnvshmem_host处理主机端通信,libnvshmem_device处理设备端通信。混合使用完整库和设备库会导致符号冲突。 -
库依赖关系
cuFFTMp依赖于NVSHMEM的特定API实现,正确的链接顺序确保解析依赖关系时能找到所有必要符号。 -
Perlmutter环境适配
使用-gpu=cc80标志指定A100 GPU的计算能力,确保生成代码能充分利用硬件特性。
实践建议
-
在Perlmutter系统上,建议使用模块环境管理不同版本的HPC SDK,避免路径硬编码。
-
对于复杂项目,考虑使用CMake等构建系统管理依赖关系和链接顺序。
-
开发过程中可以使用
nm工具检查库中的符号定义,帮助诊断链接问题。
通过遵循这些指导原则,开发者可以成功在Perlmutter系统上编译和运行基于cuFFTMp的应用程序,充分利用多GPU系统的计算能力进行大规模FFT计算。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00