FlagEmbedding项目中bge-reranker-base微调性能下降问题分析
2025-05-25 02:55:32作者:翟萌耘Ralph
问题背景
在FlagEmbedding项目中使用bge-reranker-base模型进行微调时,开发者遇到了一个典型的问题:虽然训练过程中的损失函数值持续下降并最终趋近于零,但在评估阶段却发现模型性能显著下降。具体表现为微调后的模型在NDCG等评估指标上比原始模型表现更差,且模型输出分数全部变为负值,导致负样本被错误地排在前面。
问题现象
开发者提供了详细的训练日志和评估结果对比:
-
训练过程中损失函数稳定下降:
- 初始损失:10.6336
- 最终损失:0.0152
- 梯度范数从117.04降至1.15
-
评估指标对比:
- 原始模型NDCG@10:0.7044
- 微调后模型NDCG@10:0.3063
- 原始模型NDCG@1:0.6908
- 微调后模型NDCG@1:0.1596
原因分析
经过深入探讨,可以总结出以下几个关键原因:
-
训练数据设计问题:
- 开发者采用了多级相关度标签(3,2,1,0)的设计策略
- 对于每个查询,将相关度等级为3/2/1的样本作为正样本,比正样本等级低的样本全作为负样本
- 这种设计可能导致模型学习到不合理的排序关系
-
损失函数不匹配:
- 当前使用的损失函数可能不适合多级相关度的排序任务
- 当把较低相关度的样本(C)也作为正样本时,会严重影响模型训练
-
评估方式问题:
- 使用训练数据作为评估数据,可能导致评估结果不可靠
- 模型在训练数据上过拟合,无法泛化到真实场景
解决方案建议
-
优化训练数据设计:
- 仅对前几个高相关度的样本(A,B)进行训练
- 避免将较低相关度的样本(C)作为正样本
- 确保负样本数量足够,避免重复采样
-
改进损失函数:
- 考虑使用与真实标签的KL散度作为损失函数
- 实现更适合多级相关度排序的损失函数
-
技术实现建议:
- 克隆项目仓库后修改损失函数代码
- 使用
pip install -e .命令进行本地安装和测试
-
评估策略优化:
- 使用独立的验证集进行评估
- 避免训练数据和评估数据完全一致
总结
在FlagEmbedding项目中使用bge-reranker-base进行微调时,需要特别注意训练数据的设计和损失函数的选择。对于多级相关度的排序任务,简单的二元对比损失可能不够有效。开发者应当根据实际业务场景,设计更合理的训练样本构造策略,并考虑使用更适合的损失函数,如KL散度损失等。同时,保持训练数据和评估数据的独立性也是确保模型泛化能力的重要保障。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
Error Correction Coding——mathematical methods and algorithms:深入理解纠错编码的数学精髓 HP DL380 Gen9iLO固件资源下载:提升服务器管理效率的利器 RTD2270CLW/RTD2280DLW VGA转LVDS原理图下载介绍:项目核心功能与场景 JADE软件下载介绍:专业的XRD数据分析工具 常见材料性能参数pdf下载说明:一键获取材料性能参数,助力工程设计与分析 SVPWM的原理及法则推导和控制算法详解第四修改版:让电机控制更高效 Oracle Instant Client for Microsoft Windows x64 10.2.0.5下载资源:高效访问Oracle数据库的利器 鼎捷软件tiptop5.3技术手册:快速掌握4gl语言的利器 源享科技资料大合集介绍:科技学习者的全面资源库 潘通色标薄全系列资源下载说明:设计师的创意助手
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
525
3.72 K
Ascend Extension for PyTorch
Python
329
391
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
877
578
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
162
暂无简介
Dart
764
189
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
746
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
113
137