FlagEmbedding项目中bge-reranker-base微调性能下降问题分析
2025-05-25 06:06:34作者:翟萌耘Ralph
问题背景
在FlagEmbedding项目中使用bge-reranker-base模型进行微调时,开发者遇到了一个典型的问题:虽然训练过程中的损失函数值持续下降并最终趋近于零,但在评估阶段却发现模型性能显著下降。具体表现为微调后的模型在NDCG等评估指标上比原始模型表现更差,且模型输出分数全部变为负值,导致负样本被错误地排在前面。
问题现象
开发者提供了详细的训练日志和评估结果对比:
-
训练过程中损失函数稳定下降:
- 初始损失:10.6336
- 最终损失:0.0152
- 梯度范数从117.04降至1.15
-
评估指标对比:
- 原始模型NDCG@10:0.7044
- 微调后模型NDCG@10:0.3063
- 原始模型NDCG@1:0.6908
- 微调后模型NDCG@1:0.1596
原因分析
经过深入探讨,可以总结出以下几个关键原因:
-
训练数据设计问题:
- 开发者采用了多级相关度标签(3,2,1,0)的设计策略
- 对于每个查询,将相关度等级为3/2/1的样本作为正样本,比正样本等级低的样本全作为负样本
- 这种设计可能导致模型学习到不合理的排序关系
-
损失函数不匹配:
- 当前使用的损失函数可能不适合多级相关度的排序任务
- 当把较低相关度的样本(C)也作为正样本时,会严重影响模型训练
-
评估方式问题:
- 使用训练数据作为评估数据,可能导致评估结果不可靠
- 模型在训练数据上过拟合,无法泛化到真实场景
解决方案建议
-
优化训练数据设计:
- 仅对前几个高相关度的样本(A,B)进行训练
- 避免将较低相关度的样本(C)作为正样本
- 确保负样本数量足够,避免重复采样
-
改进损失函数:
- 考虑使用与真实标签的KL散度作为损失函数
- 实现更适合多级相关度排序的损失函数
-
技术实现建议:
- 克隆项目仓库后修改损失函数代码
- 使用
pip install -e .命令进行本地安装和测试
-
评估策略优化:
- 使用独立的验证集进行评估
- 避免训练数据和评估数据完全一致
总结
在FlagEmbedding项目中使用bge-reranker-base进行微调时,需要特别注意训练数据的设计和损失函数的选择。对于多级相关度的排序任务,简单的二元对比损失可能不够有效。开发者应当根据实际业务场景,设计更合理的训练样本构造策略,并考虑使用更适合的损失函数,如KL散度损失等。同时,保持训练数据和评估数据的独立性也是确保模型泛化能力的重要保障。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 PANTONE潘通AI色板库:设计师必备的色彩管理利器 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 CS1237半桥称重解决方案:高精度24位ADC称重模块完全指南 Jetson TX2开发板官方资源完全指南:从入门到精通 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 WebVideoDownloader:高效网页视频抓取工具全面使用指南
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
20
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
384
3.71 K
暂无简介
Dart
634
144
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
651
271
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.12 K
627
React Native鸿蒙化仓库
JavaScript
244
316
Ascend Extension for PyTorch
Python
195
212