FlagEmbedding项目中bge-reranker-base微调性能下降问题分析
2025-05-25 20:55:32作者:翟萌耘Ralph
问题背景
在FlagEmbedding项目中使用bge-reranker-base模型进行微调时,开发者遇到了一个典型的问题:虽然训练过程中的损失函数值持续下降并最终趋近于零,但在评估阶段却发现模型性能显著下降。具体表现为微调后的模型在NDCG等评估指标上比原始模型表现更差,且模型输出分数全部变为负值,导致负样本被错误地排在前面。
问题现象
开发者提供了详细的训练日志和评估结果对比:
-
训练过程中损失函数稳定下降:
- 初始损失:10.6336
- 最终损失:0.0152
- 梯度范数从117.04降至1.15
-
评估指标对比:
- 原始模型NDCG@10:0.7044
- 微调后模型NDCG@10:0.3063
- 原始模型NDCG@1:0.6908
- 微调后模型NDCG@1:0.1596
原因分析
经过深入探讨,可以总结出以下几个关键原因:
-
训练数据设计问题:
- 开发者采用了多级相关度标签(3,2,1,0)的设计策略
- 对于每个查询,将相关度等级为3/2/1的样本作为正样本,比正样本等级低的样本全作为负样本
- 这种设计可能导致模型学习到不合理的排序关系
-
损失函数不匹配:
- 当前使用的损失函数可能不适合多级相关度的排序任务
- 当把较低相关度的样本(C)也作为正样本时,会严重影响模型训练
-
评估方式问题:
- 使用训练数据作为评估数据,可能导致评估结果不可靠
- 模型在训练数据上过拟合,无法泛化到真实场景
解决方案建议
-
优化训练数据设计:
- 仅对前几个高相关度的样本(A,B)进行训练
- 避免将较低相关度的样本(C)作为正样本
- 确保负样本数量足够,避免重复采样
-
改进损失函数:
- 考虑使用与真实标签的KL散度作为损失函数
- 实现更适合多级相关度排序的损失函数
-
技术实现建议:
- 克隆项目仓库后修改损失函数代码
- 使用
pip install -e .
命令进行本地安装和测试
-
评估策略优化:
- 使用独立的验证集进行评估
- 避免训练数据和评估数据完全一致
总结
在FlagEmbedding项目中使用bge-reranker-base进行微调时,需要特别注意训练数据的设计和损失函数的选择。对于多级相关度的排序任务,简单的二元对比损失可能不够有效。开发者应当根据实际业务场景,设计更合理的训练样本构造策略,并考虑使用更适合的损失函数,如KL散度损失等。同时,保持训练数据和评估数据的独立性也是确保模型泛化能力的重要保障。
登录后查看全文
热门项目推荐
相关项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
261

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
860
511

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
259
300

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

deepin linux kernel
C
22
5