Dinky 1.2.2 版本发布:增强数据开发体验与稳定性优化
Dinky 1.2.2 版本带来了多项功能增强和稳定性改进,重点提升了数据开发体验和系统可靠性。作为一款开源的数据开发平台,Dinky 持续优化其核心功能,为用户提供更流畅的数据开发工作流。
数据开发体验提升
新版本对数据目录树进行了显著优化,支持滚动交互和搜索功能。这一改进使得用户在浏览大量数据表时能够快速定位目标资源,大幅提升了数据开发的效率。同时,数据预览功能也得到增强,现在能够正确显示时间戳类型字段的字符串值,避免了原始时间戳值难以阅读的问题。
在用户界面方面,注册中心文档模态框的显示效果针对英文环境进行了优化,确保国际用户获得一致的体验。UDF 保存时的占位符提示也得到改进,帮助用户更清晰地理解操作流程。
任务管理与执行优化
任务提交机制在本版本中获得了多项改进。修复了任务提交时 pipeline.jars 配置的问题,确保依赖包能够正确加载。同时优化了集群配置的可用性验证机制,在任务执行前会进行更严格的检查,避免因配置问题导致的启动失败。
历史版本管理功能也得到修复,解决了任务推送后历史版本未及时刷新的问题。这些改进使得任务管理更加可靠,减少了开发过程中的意外中断。
系统架构与性能改进
技术架构方面,Dinky 1.2.2 对 WebSocket 架构进行了重构,使其更好地与 Spring 事件机制协同工作。这一改进提升了系统的实时通信能力,为后续的实时功能扩展奠定了基础。
在构建工具方面,项目从 NPM 切换到了 PNPM,这一变更带来了更快的依赖安装速度和更高效的磁盘空间利用。同时优化了 web 包的 package.json 内容,使项目结构更加清晰。
国际化与错误处理
国际化支持在本版本中得到加强,优化了提示消息的国际化处理,确保不同语言环境的用户都能获得清晰的反馈。错误处理机制也得到改进,修复了全局变量解析时的错误报告问题,以及空配置导致的任务启动失败问题。
总结
Dinky 1.2.2 版本通过一系列的功能增强和问题修复,进一步提升了数据开发平台的稳定性和用户体验。从数据目录的交互改进到任务管理的可靠性提升,再到系统架构的优化,这些改进共同构成了一个更加成熟的数据开发解决方案。对于现有用户来说,升级到这个版本将获得更流畅的开发体验和更稳定的运行环境。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00