MyBatis-Plus批量保存或更新性能优化实践
2025-05-13 09:17:55作者:丁柯新Fawn
背景介绍
MyBatis-Plus作为MyBatis的增强工具,在日常开发中提供了诸多便利功能。其中saveOrUpdateBatch方法是一个常用的批量操作方法,它能够智能判断数据是新增还是更新。然而在实际使用中,该方法在处理大批量数据时可能会遇到性能瓶颈。
问题分析
在MyBatis-Plus 3.5.4.1版本中,saveOrUpdateBatch方法的实现存在以下性能问题:
- 
单条校验效率低:方法内部对每条记录都单独执行查询操作来判断是否需要更新,当处理大批量数据时,会产生大量数据库查询请求。
 - 
全量数据传输浪费:即使只需要判断记录是否存在,方法也会查询并返回完整的实体数据,造成了不必要的数据传输和处理开销。
 
优化方案
针对上述问题,我们可以采用以下优化策略:
批量查询优化
将单条记录的查询改为批量查询,一次性获取所有需要判断的记录ID。这样可以显著减少数据库交互次数,提升整体性能。
选择性字段查询
通过MyBatis-Plus的Wrapper功能,我们可以只查询必要的字段(如主键ID),而不是获取完整的实体数据。这减少了数据传输量,提高了查询效率。
具体实现
优化后的实现思路如下:
- 首先收集批量数据中的所有主键ID
 - 使用Wrapper构建只查询主键字段的批量查询
 - 执行批量查询获取已存在的ID集合
 - 根据查询结果决定每条记录是执行插入还是更新操作
 
关键代码示例:
// 构建只查询主键的Wrapper
Map<String,Object> params = new HashMap<>();
params.put(Constants.WRAPPER, Wrappers.query()
    .select(keyProperty)
    .in(keyProperty, idList));
// 执行批量查询
List<主键类型> existIds = sqlSession.selectList(
    getSqlStatement(SqlMethod.SELECT_OBJS), 
    params);
性能对比
优化前后的性能差异主要体现在:
- 数据库交互次数:从N次(N为记录数)降低到1次
 - 数据传输量:从完整实体数据减少到仅主键字段
 - 处理时间:整体处理时间大幅缩短,尤其在处理万级以上数据时效果显著
 
注意事项
- 批量操作时应合理设置批次大小,避免单次操作数据量过大
 - 在高并发场景下,需考虑乐观锁等机制保证数据一致性
 - 对于特别大的数据集,建议采用分批次处理的方式
 
总结
通过对MyBatis-Plus saveOrUpdateBatch方法的优化,我们有效解决了批量操作时的性能瓶颈问题。这种优化思路不仅适用于此特定场景,也可以推广到其他需要批量判断数据是否存在的业务场景中。在实际开发中,我们应该根据具体业务需求和数据规模,选择最适合的优化方案。
登录后查看全文 
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
 
最新内容推荐
 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
272
2.56 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
222
302
Ascend Extension for PyTorch
Python
103
130
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
597
157
暂无简介
Dart
564
125
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
231
14
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
606
仓颉编译器源码及 cjdb 调试工具。
C++
118
95
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
444