MyBatis-Plus批量保存或更新性能优化实践
2025-05-13 15:27:53作者:丁柯新Fawn
背景介绍
MyBatis-Plus作为MyBatis的增强工具,在日常开发中提供了诸多便利功能。其中saveOrUpdateBatch方法是一个常用的批量操作方法,它能够智能判断数据是新增还是更新。然而在实际使用中,该方法在处理大批量数据时可能会遇到性能瓶颈。
问题分析
在MyBatis-Plus 3.5.4.1版本中,saveOrUpdateBatch方法的实现存在以下性能问题:
-
单条校验效率低:方法内部对每条记录都单独执行查询操作来判断是否需要更新,当处理大批量数据时,会产生大量数据库查询请求。
-
全量数据传输浪费:即使只需要判断记录是否存在,方法也会查询并返回完整的实体数据,造成了不必要的数据传输和处理开销。
优化方案
针对上述问题,我们可以采用以下优化策略:
批量查询优化
将单条记录的查询改为批量查询,一次性获取所有需要判断的记录ID。这样可以显著减少数据库交互次数,提升整体性能。
选择性字段查询
通过MyBatis-Plus的Wrapper功能,我们可以只查询必要的字段(如主键ID),而不是获取完整的实体数据。这减少了数据传输量,提高了查询效率。
具体实现
优化后的实现思路如下:
- 首先收集批量数据中的所有主键ID
- 使用Wrapper构建只查询主键字段的批量查询
- 执行批量查询获取已存在的ID集合
- 根据查询结果决定每条记录是执行插入还是更新操作
关键代码示例:
// 构建只查询主键的Wrapper
Map<String,Object> params = new HashMap<>();
params.put(Constants.WRAPPER, Wrappers.query()
.select(keyProperty)
.in(keyProperty, idList));
// 执行批量查询
List<主键类型> existIds = sqlSession.selectList(
getSqlStatement(SqlMethod.SELECT_OBJS),
params);
性能对比
优化前后的性能差异主要体现在:
- 数据库交互次数:从N次(N为记录数)降低到1次
- 数据传输量:从完整实体数据减少到仅主键字段
- 处理时间:整体处理时间大幅缩短,尤其在处理万级以上数据时效果显著
注意事项
- 批量操作时应合理设置批次大小,避免单次操作数据量过大
- 在高并发场景下,需考虑乐观锁等机制保证数据一致性
- 对于特别大的数据集,建议采用分批次处理的方式
总结
通过对MyBatis-Plus saveOrUpdateBatch方法的优化,我们有效解决了批量操作时的性能瓶颈问题。这种优化思路不仅适用于此特定场景,也可以推广到其他需要批量判断数据是否存在的业务场景中。在实际开发中,我们应该根据具体业务需求和数据规模,选择最适合的优化方案。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
525
3.72 K
Ascend Extension for PyTorch
Python
329
391
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
877
578
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
162
暂无简介
Dart
764
189
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
746
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
React Native鸿蒙化仓库
JavaScript
302
350