Turing.jl中SliceSampling作为Gibbs采样器的实现与应用
引言
在贝叶斯统计建模中,Gibbs采样是一种常用的马尔可夫链蒙特卡洛(MCMC)方法。Turing.jl作为Julia生态中强大的概率编程语言,提供了灵活的Gibbs采样实现。本文将深入探讨如何在Turing.jl中利用SliceSampling.jl包作为Gibbs采样的组件,以及在实际应用中的性能表现。
SliceSampling与Gibbs采样的结合原理
SliceSampling(切片采样)是一种无需调整参数的MCMC方法,它通过"切片"技术从目标分布中采样。将其作为Gibbs采样的一个组件,可以充分利用Gibbs采样对高维参数空间分解的优势,同时避免手动调整采样参数的麻烦。
在Turing.jl中,通过Experimental.Gibbs接口,我们可以将SliceSampling的采样器作为外部采样器(external sampler)集成到Gibbs框架中。这种组合特别适合于模型中同时包含连续型和离散型变量的情况。
实现方法
在Turing.jl中实现SliceSampling作为Gibbs采样组件的核心代码如下:
using Distributions, Turing, SliceSampling
@model function demo()
s ~ InverseGamma(3, 3)
m ~ MvNormal(zeros(10), sqrt(s))
end
# 定义必要的接口方法
Turing.Inference.getparams(::Turing.DynamicPPL.Model, state::SliceSampling.UnivariateSliceState) = state.transition.params
Turing.Inference.getparams(::Turing.DynamicPPL.Model, state::SliceSampling.GibbsState) = state.transition.params
Turing.Experimental.gibbs_requires_recompute_logprob(
model_dst,
::DynamicPPL.Sampler{<:Turing.Inference.ExternalSampler},
sampler_src,
state_dst,
state_src
) = false
# 采样执行
n_samples = 10000
model = demo()
sample(
model,
Experimental.Gibbs(
(
m = externalsampler(RandPermGibbs(SliceSteppingOut(0.1))),
s = externalsampler(SliceSteppingOut(0.1)),
),
),
n_samples
)
实际应用案例
考虑一个简单的混合模型示例,展示了SliceSampling在Gibbs框架中的实际应用:
@model function simple_choice(xs)
p ~ Beta(2, 2)
z ~ Bernoulli(p)
for i in 1:length(xs)
if z == 1
xs[i] ~ Normal(0, 1)
else
xs[i] ~ Normal(2, 1)
end
end
end
model = simple_choice([1.5, 2.0, 0.3])
# 使用HMC和PG的组合
sample(model, Gibbs(HMC(0.2, 3, :p), PG(20, :z)), 1000)
# 使用SliceSampling和PG的组合
sample(model, Experimental.Gibbs((
p = externalsampler(SliceSteppingOut(2.0)),
z = PG(20)),
n_samples)
性能比较
通过对比实验,我们可以观察到SliceSampling在Gibbs框架中的表现:
-
HMC+PG组合:
- 参数p的均值: 0.4259
- 标准差: 0.1945
- ESS/s: 9.2327
-
SliceSteppingOut+PG组合:
- 参数p的均值: 0.5936
- 标准差: 0.1897
- ESS/s: 59.9814
-
SliceDoublingOut+PG组合:
- 参数p的均值: 0.5970
- 标准差: 0.1919
- ESS/s: 67.0373
从结果可以看出,SliceSampling变体在有效样本量每秒(ESS/s)指标上显著优于HMC,且无需复杂的参数调优。
注意事项与最佳实践
-
变量顺序问题:在联合采样多个变量时,变量的顺序会影响结果。建议按照模型中变量出现的顺序指定采样变量。
-
PG采样器使用:在使用粒子Gibbs(PG)采样器时,不应指定变量名参数,直接使用
PG(20)而非PG(20, :z)。 -
参数设置:SliceSampling的步长参数(如SliceSteppingOut中的2.0)虽然不需要精确调整,但过大或过小仍会影响采样效率。
-
扩展实现:目前最佳实践是通过包扩展机制实现接口,未来这些接口可能会迁移到AbstractMCMC.jl中。
结论
将SliceSampling集成到Turing.jl的Gibbs采样框架中,提供了一种高效且无需复杂调参的贝叶斯推断方法。特别适合那些包含连续变量的模型,在实际应用中表现出色。随着Turing生态系统的不断完善,这种组合采样方法将为复杂统计建模提供更加灵活高效的解决方案。
对于Julia用户而言,掌握这种技术组合将大大提升贝叶斯建模的效率和便利性,特别是在处理中等规模问题时,可以避免繁琐的采样器参数调优过程。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00