percona-server-mongodb 的安装和配置教程
1. 项目的基础介绍和主要的编程语言
Percona Server for MongoDB是由Percona公司开发的一个开源数据库管理系统,它是MongoDB的增强版本,提供了改进的企业级功能,如性能提升、更好的监控、安全性增强等。Percona Server for MongoDB主要用于处理大数据和实时分析场景,它兼容MongoDB的协议和工具,可以无缝地替换MongoDB。
项目主要使用C++作为编程语言,同时也使用了JavaScript来编写部分数据库操作和配置脚本。
2. 项目使用的关键技术和框架
Percona Server for MongoDB基于MongoDB源码,使用了以下关键技术和框架:
- 文档存储引擎:Percona Server for MongoDB使用BSON(Binary JSON)作为数据存储格式。
- 复制和分片:支持数据的复制和自动分片,以实现高可用性和水平扩展。
- 内存映射文件:使用内存映射文件来提升数据访问速度。
- 日志和事务:支持多版本并发控制(MVCC)和事务日志,保证数据的一致性和完整性。
3. 项目安装和配置的准备工作和详细的安装步骤
准备工作
在安装Percona Server for MongoDB之前,您需要确保系统中已安装以下依赖项:
- GCC 4.9或更高版本
- CMake 3.3.2或更高版本
- Python 2.7或更高版本(用于运行测试)
- OpenSSL 1.0.1或更高版本
- Boost(及其开发库)1.59或更高版本
- numactl(可选,用于某些内存优化)
安装步骤
以下是基于Linux系统的安装步骤:
-
安装依赖项:
根据您的Linux发行版,您可以使用包管理器安装必要的依赖项。以下是在Ubuntu上的示例:
sudo apt-get update sudo apt-get install -y git build-essential libssl-dev libboost-all-dev libgoogle-glog-dev libtcmalloc-minimal4 libeigen3-dev -
克隆项目源代码:
从GitHub克隆Percona Server for MongoDB的源代码:
git clone https://github.com/percona/percona-server-mongodb.git -
编译源代码:
进入项目目录,创建一个构建目录并切换到该目录:
cd percona-server-mongodb mkdir build && cd build运行CMake来配置项目:
cmake ..然后编译源代码:
make -
安装数据库:
在构建目录中,运行以下命令来安装Percona Server for MongoDB:
sudo make install -
初始化数据库:
初始化数据库,创建数据目录和配置文件:
sudo mongod --initAndListen -
启动MongoDB服务:
使用systemd或init脚本来启动MongoDB服务:
sudo systemctl start mongod或者如果你使用的是老版本的系统:
sudo service mongod start -
验证安装:
通过连接到MongoDB服务来验证安装:
mongo如果能够成功连接并进入MongoDB shell,那么Percona Server for MongoDB已成功安装。
以上步骤为Percona Server for MongoDB的基本安装流程,具体配置可能需要根据您的实际需求进行调整。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C083
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00