Apache Fury 在 GraalVM 下处理 ConcurrentSkipListSet 序列化的技术解析
Apache Fury 是一个高性能的序列化框架,但在某些特定环境下会遇到兼容性问题。本文将深入分析 Fury 在 GraalVM 原生镜像环境下处理 ConcurrentSkipListSet 时出现的构造方法异常问题,并探讨解决方案。
问题现象
当开发者在 GraalVM 原生镜像环境下使用 Apache Fury 0.9.0 版本时,初始化过程中会抛出以下异常:
java.lang.UnsupportedOperationException: java.lang.NoSuchMethodException:
no such constructor: java.util.concurrent.ConcurrentSkipListSet.<init>(Comparator)void/newInvokeSpecial
异常堆栈显示 Fury 在尝试为 ConcurrentSkipListSet 创建序列化器时,无法找到接受 Comparator 参数的构造方法。这个问题特别容易在 GraalVM 的 AOT(Ahead-Of-Time)编译模式下出现。
技术背景
GraalVM 原生镜像特性
GraalVM 的原生镜像编译会进行深度优化,包括:
- 封闭世界假设:只包含运行时实际使用的代码
- 提前编译:所有代码在构建时确定
- 反射限制:默认情况下会限制反射操作
Fury 的序列化机制
Fury 使用反射和 MethodHandle 来动态创建对象的序列化器。对于集合类型,它会尝试找到最匹配的构造方法来实例化对象。
问题根源
ConcurrentSkipListSet 确实存在接受 Comparator 的构造方法,但在 GraalVM 原生镜像环境下:
- 反射信息可能未被正确保留
- MethodHandle 查找机制受限
- AOT 编译可能优化掉了某些"看似未使用"的构造方法
解决方案
方案一:显式注册序列化器
在静态初始化块中提前注册 ConcurrentSkipListSet 的序列化器:
Fury fury = Fury.builder()
.registerSerializer(ConcurrentSkipListSet.class, new CustomConcurrentSkipListSetSerializer())
.build();
方案二:GraalVM 原生镜像配置
创建反射配置文件,明确告诉 GraalVM 需要保留哪些反射信息:
{
"name": "java.util.concurrent.ConcurrentSkipListSet",
"methods": [
{"name": "<init>", "parameterTypes": ["java.util.Comparator"]}
]
}
方案三:自定义序列化器
实现一个不依赖特定构造方法的序列化器:
public class CustomConcurrentSkipListSetSerializer extends Serializer<ConcurrentSkipListSet> {
@Override
public void write(MemoryBuffer buffer, ConcurrentSkipListSet set) {
// 自定义序列化逻辑
}
@Override
public ConcurrentSkipListSet read(MemoryBuffer buffer) {
// 使用无参构造方法
return new ConcurrentSkipListSet();
}
}
最佳实践建议
- 提前初始化:在静态代码块中初始化 Fury 并注册所有需要的序列化器
- 全面测试:在原生镜像构建前后进行全面测试
- 配置管理:维护好 GraalVM 的反射配置文件
- 版本适配:确保 Fury 和 GraalVM 版本兼容
总结
Apache Fury 在 GraalVM 原生镜像环境下处理 ConcurrentSkipListSet 序列化时遇到的问题,本质上是 AOT 编译特性与动态反射机制之间的冲突。通过合理的配置和编码实践,可以有效地解决这类兼容性问题,充分发挥 Fury 的高性能序列化能力。
对于需要在 GraalVM 原生镜像中使用 Fury 的开发者,建议提前规划好序列化策略,并在项目早期就进行相关兼容性测试,以避免后期出现难以排查的运行时问题。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C065
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00