Apache Fury 在 GraalVM 下处理 ConcurrentSkipListSet 序列化的技术解析
Apache Fury 是一个高性能的序列化框架,但在某些特定环境下会遇到兼容性问题。本文将深入分析 Fury 在 GraalVM 原生镜像环境下处理 ConcurrentSkipListSet 时出现的构造方法异常问题,并探讨解决方案。
问题现象
当开发者在 GraalVM 原生镜像环境下使用 Apache Fury 0.9.0 版本时,初始化过程中会抛出以下异常:
java.lang.UnsupportedOperationException: java.lang.NoSuchMethodException:
no such constructor: java.util.concurrent.ConcurrentSkipListSet.<init>(Comparator)void/newInvokeSpecial
异常堆栈显示 Fury 在尝试为 ConcurrentSkipListSet 创建序列化器时,无法找到接受 Comparator 参数的构造方法。这个问题特别容易在 GraalVM 的 AOT(Ahead-Of-Time)编译模式下出现。
技术背景
GraalVM 原生镜像特性
GraalVM 的原生镜像编译会进行深度优化,包括:
- 封闭世界假设:只包含运行时实际使用的代码
- 提前编译:所有代码在构建时确定
- 反射限制:默认情况下会限制反射操作
Fury 的序列化机制
Fury 使用反射和 MethodHandle 来动态创建对象的序列化器。对于集合类型,它会尝试找到最匹配的构造方法来实例化对象。
问题根源
ConcurrentSkipListSet 确实存在接受 Comparator 的构造方法,但在 GraalVM 原生镜像环境下:
- 反射信息可能未被正确保留
- MethodHandle 查找机制受限
- AOT 编译可能优化掉了某些"看似未使用"的构造方法
解决方案
方案一:显式注册序列化器
在静态初始化块中提前注册 ConcurrentSkipListSet 的序列化器:
Fury fury = Fury.builder()
.registerSerializer(ConcurrentSkipListSet.class, new CustomConcurrentSkipListSetSerializer())
.build();
方案二:GraalVM 原生镜像配置
创建反射配置文件,明确告诉 GraalVM 需要保留哪些反射信息:
{
"name": "java.util.concurrent.ConcurrentSkipListSet",
"methods": [
{"name": "<init>", "parameterTypes": ["java.util.Comparator"]}
]
}
方案三:自定义序列化器
实现一个不依赖特定构造方法的序列化器:
public class CustomConcurrentSkipListSetSerializer extends Serializer<ConcurrentSkipListSet> {
@Override
public void write(MemoryBuffer buffer, ConcurrentSkipListSet set) {
// 自定义序列化逻辑
}
@Override
public ConcurrentSkipListSet read(MemoryBuffer buffer) {
// 使用无参构造方法
return new ConcurrentSkipListSet();
}
}
最佳实践建议
- 提前初始化:在静态代码块中初始化 Fury 并注册所有需要的序列化器
- 全面测试:在原生镜像构建前后进行全面测试
- 配置管理:维护好 GraalVM 的反射配置文件
- 版本适配:确保 Fury 和 GraalVM 版本兼容
总结
Apache Fury 在 GraalVM 原生镜像环境下处理 ConcurrentSkipListSet 序列化时遇到的问题,本质上是 AOT 编译特性与动态反射机制之间的冲突。通过合理的配置和编码实践,可以有效地解决这类兼容性问题,充分发挥 Fury 的高性能序列化能力。
对于需要在 GraalVM 原生镜像中使用 Fury 的开发者,建议提前规划好序列化策略,并在项目早期就进行相关兼容性测试,以避免后期出现难以排查的运行时问题。
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0107DuiLib_Ultimate
DuiLib_Ultimate是duilib库的增强拓展版,库修复了大量用户在开发使用中反馈的Bug,新增了更加贴近产品开发需求的功能,并持续维护更新。C++03GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。08- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile03
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
- Dd2l-zh《动手学深度学习》:面向中文读者、能运行、可讨论。中英文版被70多个国家的500多所大学用于教学。Python011
热门内容推荐
最新内容推荐
项目优选









