CWT-for-FSS 项目使用教程
2024-09-22 23:11:45作者:咎竹峻Karen
1. 项目介绍
CWT-for-FSS 是一个用于少样本语义分割的开源项目,其核心思想是通过 Classifier Weight Transformer (CWT) 动态调整分类器的权重,以适应每个查询样本,从而简化模型的训练过程。该项目在 ICCV2021 上发表,旨在提供一种更简单且高效的少样本语义分割解决方案。
2. 项目快速启动
2.1 环境配置
首先,确保你的环境中安装了以下依赖:
torch==1.6.0
numpy==1.19.1
cv2==4.4.0
pyyaml==5.3.1
2.2 下载项目
使用 Git 克隆项目到本地:
git clone https://github.com/zhiheLu/CWT-for-FSS.git
cd CWT-for-FSS
2.3 数据准备
按照项目说明下载并处理数据集。处理完成后,修改配置文件中的 data_root 和 train/val_list 路径。
2.4 预训练模型
下载预训练模型并将其放置在指定目录中:
wget https://drive.google.com/file/d/1VPBquiy4DZXu8b6qsSB6XtO5_6jTpXgo/view?usp=sharing
将下载的模型文件路径设置到配置文件中的 resume_weights。
2.5 训练与推理
2.5.1 训练
使用以下命令进行训练:
sh scripts/train.sh pascal 0 [0] 50 1
2.5.2 推理
使用以下命令进行推理:
sh scripts/test.sh pascal 1 [0] 50 0
3. 应用案例和最佳实践
3.1 应用案例
CWT-for-FSS 可以应用于需要少样本学习的场景,例如医学图像分割、遥感图像分析等。在这些领域,获取大量标注数据通常成本高昂,少样本学习方法能够显著降低数据需求。
3.2 最佳实践
- 数据增强:在训练过程中使用数据增强技术,如随机裁剪、旋转和翻转,可以提高模型的泛化能力。
- 超参数调优:通过网格搜索或贝叶斯优化等方法,调整学习率、批量大小等超参数,以获得最佳性能。
- 模型集成:将多个模型的预测结果进行集成,可以进一步提高分割精度。
4. 典型生态项目
- PFENet:该项目提供了少样本语义分割的基础框架,CWT-for-FSS 从中借鉴了部分代码和数据处理方法。
- RePRI-for-Few-Shot-Segmentation:另一个少样本语义分割项目,提供了不同的模型架构和训练策略,可以作为 CWT-for-FSS 的补充和对比。
通过以上步骤,你可以快速上手并应用 CWT-for-FSS 项目,实现高效的少样本语义分割。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
全球36个生物多样性热点地区KML矢量图资源详解与应用指南 Python案例资源下载 - 从入门到精通的完整项目代码合集 PANTONE潘通AI色板库:设计师必备的色彩管理利器 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 Python开发者的macOS终极指南:VSCode安装配置全攻略 STM32到GD32项目移植完全指南:从兼容性到实战技巧 Jetson TX2开发板官方资源完全指南:从入门到精通 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
191
210
暂无简介
Dart
630
143
React Native鸿蒙化仓库
JavaScript
243
316
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
481
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
649
270
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
296
107
仓颉编译器源码及 cjdb 调试工具。
C++
128
858
openGauss kernel ~ openGauss is an open source relational database management system
C++
158
210