CWT-for-FSS 项目使用教程
2024-09-22 16:33:56作者:咎竹峻Karen
1. 项目介绍
CWT-for-FSS 是一个用于少样本语义分割的开源项目,其核心思想是通过 Classifier Weight Transformer (CWT) 动态调整分类器的权重,以适应每个查询样本,从而简化模型的训练过程。该项目在 ICCV2021 上发表,旨在提供一种更简单且高效的少样本语义分割解决方案。
2. 项目快速启动
2.1 环境配置
首先,确保你的环境中安装了以下依赖:
torch==1.6.0
numpy==1.19.1
cv2==4.4.0
pyyaml==5.3.1
2.2 下载项目
使用 Git 克隆项目到本地:
git clone https://github.com/zhiheLu/CWT-for-FSS.git
cd CWT-for-FSS
2.3 数据准备
按照项目说明下载并处理数据集。处理完成后,修改配置文件中的 data_root
和 train/val_list
路径。
2.4 预训练模型
下载预训练模型并将其放置在指定目录中:
wget https://drive.google.com/file/d/1VPBquiy4DZXu8b6qsSB6XtO5_6jTpXgo/view?usp=sharing
将下载的模型文件路径设置到配置文件中的 resume_weights
。
2.5 训练与推理
2.5.1 训练
使用以下命令进行训练:
sh scripts/train.sh pascal 0 [0] 50 1
2.5.2 推理
使用以下命令进行推理:
sh scripts/test.sh pascal 1 [0] 50 0
3. 应用案例和最佳实践
3.1 应用案例
CWT-for-FSS 可以应用于需要少样本学习的场景,例如医学图像分割、遥感图像分析等。在这些领域,获取大量标注数据通常成本高昂,少样本学习方法能够显著降低数据需求。
3.2 最佳实践
- 数据增强:在训练过程中使用数据增强技术,如随机裁剪、旋转和翻转,可以提高模型的泛化能力。
- 超参数调优:通过网格搜索或贝叶斯优化等方法,调整学习率、批量大小等超参数,以获得最佳性能。
- 模型集成:将多个模型的预测结果进行集成,可以进一步提高分割精度。
4. 典型生态项目
- PFENet:该项目提供了少样本语义分割的基础框架,CWT-for-FSS 从中借鉴了部分代码和数据处理方法。
- RePRI-for-Few-Shot-Segmentation:另一个少样本语义分割项目,提供了不同的模型架构和训练策略,可以作为 CWT-for-FSS 的补充和对比。
通过以上步骤,你可以快速上手并应用 CWT-for-FSS 项目,实现高效的少样本语义分割。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0370Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++098AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
203
2.18 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
62
94

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
977
575

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
84

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133