PlayCanvas引擎中光照颜色空间处理的问题与改进
PlayCanvas引擎是一款流行的WebGL游戏引擎,它提供了强大的3D渲染能力。在引擎的渲染管线中,光照、材质和环境颜色的处理是一个核心部分,但当前实现存在一些值得探讨的技术问题。
当前实现的问题
在PlayCanvas引擎中,Scene.gammaCorrection参数控制着光照、材质和环境颜色的存储方式。当gammaCorrection启用时(默认情况),这些颜色值会被存储在gamma空间;当禁用时,则存储在线性空间。这种设计带来了两个主要问题:
-
视觉不一致性:当gammaCorrection设置发生变化时,场景的视觉效果会不一致。因为虽然着色器的数学计算保持不变,但输入的uniform颜色值却发生了变化。特别是在切换到HDR模式时,场景会显得过亮。
-
多相机处理问题:引擎无法正确处理同时使用sRGB和线性空间的不同相机,因为颜色调整是基于全局gamma设置进行的。
技术背景
在计算机图形学中,gamma校正是一个重要的概念。显示器通常以非线性方式显示颜色(gamma空间),而光照计算则需要在线性空间中进行以获得物理正确的结果。传统流程包括:
- 将纹理从gamma空间转换到线性空间
- 在线性空间中进行光照计算
- 将结果转换回gamma空间输出到屏幕
改进方案
建议的改进方案是:
-
统一颜色存储:始终将光照、材质和环境颜色存储在线性空间,无论gammaCorrection设置如何。这符合图形学最佳实践,因为光照计算应该始终在线性空间进行。
-
明确gammaCorrection职责:Scene.gammaCorrection应仅影响像素写入渲染目标的方式,而不影响输入颜色的编码。
预期影响
这一改进对大多数用户几乎没有影响,因为:
- 线性空间存储已经是当前默认行为
- PlayCanvas的HDR渲染路径此前功能并不完善
实现细节
改进涉及多个核心文件的修改,包括标准材质处理、前向渲染器等部分。主要修改点包括颜色值的存储方式和gamma校正的应用时机。
总结
这一改进将使PlayCanvas的渲染管线更加符合现代图形学实践,解决当前存在的视觉不一致问题,并为多相机渲染提供更好的支持。对于开发者而言,这意味着更可预测的渲染结果和更灵活的渲染管线配置选项。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00