Awesome-LLM项目中的主流LLM推理引擎技术解析
2025-05-09 16:48:47作者:谭伦延
在大型语言模型(LLM)的实际应用中,推理引擎的选择对模型性能、资源消耗和部署效率有着决定性影响。Awesome-LLM项目作为LLM领域的权威资源库,特别关注了当前主流的LLM推理引擎技术。
主流LLM推理引擎概述
现代LLM推理引擎主要解决模型部署中的性能瓶颈问题,通过优化计算、内存管理和并行处理等方式提升推理效率。Awesome-LLM项目收录了以下几类代表性解决方案:
-
llama.cpp:专注于在消费级硬件上高效运行LLM的轻量级解决方案,特别适合CPU环境部署,通过量化技术显著降低资源需求。
-
exllama:专为GPU优化的推理引擎,采用创新的内存管理策略和内核优化技术,在消费级显卡上实现高性能推理。
-
vLLM:由加州大学伯克利分校团队开发的高吞吐量推理系统,采用创新的PagedAttention技术,显著提升长序列处理的效率。
-
TGI(Text Generation Inference):Hugging Face推出的生产级推理解决方案,支持多GPU并行和连续批处理,适合企业级部署场景。
技术特点比较
这些推理引擎各有侧重,形成了互补的技术生态:
- 硬件适应性:llama.cpp侧重CPU,exllama和vLLM侧重GPU,TGI则提供跨硬件支持
- 性能优化:从内存管理(exllama)、注意力机制优化(vLLM)到批处理技术(TGI)
- 部署场景:从本地开发(llama.cpp)到云原生部署(TGI)的全覆盖
发展趋势
当前LLM推理引擎技术呈现以下发展趋势:
- 硬件专用化:针对不同计算设备(CPU/GPU/TPU)的专用优化成为主流
- 量化普及:4-bit及以下量化技术的广泛应用大幅降低部署门槛
- 长上下文支持:新型注意力机制优化使处理长文档成为可能
- 生产化工具链:从单纯推理扩展到监控、扩展等企业级功能
选型建议
对于开发者而言,选择推理引擎应考虑:
- 目标硬件环境
- 模型规模与量化需求
- 吞吐量与时延要求
- 生产部署的扩展性需求
Awesome-LLM项目对这些技术的系统整理,为开发者提供了宝贵的选型参考,推动了LLM技术的实际落地应用。随着技术演进,推理引擎将继续向着更高效率、更低成本和更易部署的方向发展。
登录后查看全文
热门项目推荐
相关项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
261

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
858
509

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
257
300

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
331
1.08 K

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
397
370

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

deepin linux kernel
C
22
5