在Sentence-Transformers中处理类别不平衡问题的技术方案
2025-05-13 09:03:49作者:殷蕙予
背景介绍
在自然语言处理任务中,我们经常会遇到类别不平衡的数据集。当使用Sentence-Transformers项目中的CrossEncoder进行训练时,这种不平衡可能会导致模型偏向于多数类,而忽视少数类的学习。本文将详细介绍如何在CrossEncoder训练中应用类别权重来解决这一问题。
类别权重的作用原理
类别权重是一种常见的处理类别不平衡的技术手段。其核心思想是通过为不同类别分配不同的损失权重,使得模型在训练过程中更加关注样本较少的类别。具体来说:
- 对于样本量较少的类别,我们会赋予较高的权重
- 对于样本量较多的类别,我们会赋予较低的权重
- 这样在计算损失时,少数类的错误会被放大,促使模型更加关注这些类别
实现方法
在Sentence-Transformers的CrossEncoder中,我们可以通过以下步骤实现类别权重的应用:
- 统计各类别样本数量:首先需要计算训练数据中每个类别的样本数量
- 计算类别权重:基于样本数量计算每个类别的权重
- 配置损失函数:将计算好的权重应用到交叉熵损失函数中
- 传入模型训练:在模型训练时使用配置好的损失函数
具体实现代码如下:
# 假设有3个类别
num_labels = 3
# 统计每个类别的样本数量
label_counts = {}
for k in range(num_labels):
label_counts[k] = len([x.label for x in train_samples if x.label == k])
# 计算类别权重(样本量越少,权重越高)
class_weights = torch.tensor([sum(label_counts.values())/v for v in label_counts.values()])
# 创建带权重的交叉熵损失函数
loss = nn.CrossEntropyLoss(weight=class_weights)
# 使用配置好的损失函数训练CrossEncoder
model.fit(
train_dataloader=train_dataloader,
loss_fct=loss,
evaluator=evaluator,
epochs=num_epochs,
evaluation_steps=10000,
warmup_steps=warmup_steps,
output_path=model_save_path,
)
技术细节说明
- 权重计算方式:代码中使用的是样本总数除以各类别样本数的方法,这确保了样本量越少的类别获得越高的权重
- 数据类型转换:需要将计算得到的权重转换为PyTorch张量(tensor)格式
- 损失函数配置:CrossEntropyLoss的weight参数接受的就是我们计算好的类别权重
- 训练过程:在调用fit方法时,将配置好的损失函数通过loss_fct参数传入
实际应用建议
- 权重计算时机:建议在数据预处理阶段就完成类别权重的计算
- 权重归一化:可以考虑对权重进行归一化处理,避免数值过大影响训练稳定性
- 验证集评估:使用类别权重后,需要特别关注模型在验证集上的表现,确保没有过拟合少数类
- 权重调整:可以根据实际效果对权重进行微调,不一定严格使用样本数量的倒数
总结
在Sentence-Transformers的CrossEncoder训练中应用类别权重,是解决类别不平衡问题的有效手段。通过合理计算和配置类别权重,可以显著提升模型在少数类上的表现,从而获得更加均衡的模型性能。本文介绍的方法简单易行,且在实践中证明有效,值得在面临类别不平衡问题时尝试应用。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
615
140
Ascend Extension for PyTorch
Python
168
190
React Native鸿蒙化仓库
JavaScript
240
315
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
258
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
373
3.19 K
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.09 K
618
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
262
92